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Abstract

The field of Electronic Design Automation (EDA) is a growing field whose growth is

fueled, among many factors, by the ever increasing number of Application Specific

Integrated Circuits (ASIC) that are required by several digital systems. Amidst the

current explosion in the design and production of Internet of Things (IoT) (typically

battery powered devices), the need for power-aware design has come to reach

critical importance. The need for a holistic view (power-aware) of the implications

and challenges brought forth by the need to curb and properly manage power

consumption power has revealed a need for the EDA field to explore system-level

top-down based methodologies. As a response to the needs, this research document

presents two frameworks based on specification analysis at the system-level in order

to address the holistic view of power-aware design. One of the frameworks focuses

on system-level specifications written in natural language (ie. English), whereas

the other focuses on system-level specifications written in a technical language

(ie. SystemC). The frameworks are shown to be able to analyze these types of

system-level specifications as a means to aid designers in power-aware ASIC design

at the system level. These frameworks encapsulate the contributions of this thesis,

which are defined by the proper devising of analytical rules to parse the system-

level specification so as to extract the basic underlying Power Management Strategy

(PMS) laid out of by the specification under analysis. Use cases that show the

effectiveness of the frameworks in aiding designers include typical ASIC elements

such as a bus, a port processor, encoders and a processor centric programmable

System-on-Chip (SoC), all of them also typical components of IoT devices. The

research document ends with a conclusion both summarizing the work and pointing

to possible future extensions to the frameworks and general research lines that are

possibles avenues for future developments in the field of specification analysis for

power-aware system-level ASIC design.
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Introduction and Motivation 1
„In design, one of the most difficult activities is to

get the specifications right [1]

— Donald A. Norman

(Professor. Usability engineering and design

expert)

1.1 Introduction

Much has transpired since the origins of the Integrated Circuit (IC) design industry.

50 years after Gordon Moore first famously observed and proposed the "law" that

bears his name, explaining how the number of transistors doubles every year, the

IC industry has further developed following the upsurge in the demand for the

highest processing power in the smallest possible package. What began in the late

1940s as a way to combine discrete electronic components to produce amplification

devices, took a far more generic turn when Jack Kilby showed a working monolithic

integrated circuit at the end of the 1950s [2]. While trying to find a way to improve

the reliability of the interconnected modules made of discrete components (thereby

offering a way to solve the so called "Tyranny of numbers"), Jack Kilby ushered an

era in which the electronic circuits grew in complexity, reliability and performance

and decreased in size and price[3].

Onto the 1960s and 1970s, the applications of the IC products grew, as their design

and manufacturing costs diminished. The evolution of the IC design industry in

these decades, also led to the emergence, development and consolidation of the

Electronic Design Automation (EDA) field, whose techniques and tools supported

the ever increasing rate of development. The automation, which began with tools

for placement and routing (that is to say, mainly layout tasks), took a massive leap

forward in the 1980s, when the number of integrated components in ICs boomed

into the hundreds of thousands. Indeed, by the early 1980s, the relatively artisanal

way in which IC design had been conducted for the previous two decades, had been
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transformed by systematization, spearheaded by the work of pioneers such as Carver

Mead and Lynn Conway [4].

As the complexity of IC products was increasing, the EDA industry found itself

needing to address an equally increasing number of recurring concerns in the design

flow. Many of these concerns were no longer only associated with the layout tasks

that had been the object of most of the automation techniques being developed thus

far [5]. As the IC design industry moved away from focusing solely on the placement

and routing phases of a design, ad-hoc design languages became the preferred

way to deal with challenges brought up by the need for verification (assurance

of compliance of the design with an specification) and validation (assurance of

addressing the need that the design is supposed to meet) [6].

The main companies in the EDA industry became closely acquainted with the

use of simulation methods as a viable approach to addressing the demands and

requirements of an industry with ever expanding fields of application. What had first

started as transistor and logic simulation, incorporated functional simulation, where

the increasing need for architectural verification was more appropriately met [7].

Even before that time, the IC design industry had also begun to eye and behold tools

and techniques of formal verification (such as model checking and temporal logics)

as a more suitable way to address the stringent safety and security requirements

of some industries in which ICs were being deployed (as become the case with the

aerospace and defense industries).

By the 1980s, the IC industry had been the main driving force behind inherently

programmable microprocessors and other general purpose highly configurable com-

puting platforms, which the public had begun to realize were at the core of their

digital electronic devices. However, in addition to enabling the design of highly

complex comprehensive digital information processing circuits, the EDA community

(now a blossoming industry of its own), also enabled the development of more spe-

cialized ICs, which became known under the moniker Application Specific Integrated

Circuit (ASIC). The ASIC world benefited immensely from the creation of Hardware

Description Languages (HDL), for this mirrored the flexibility of platform independent

high-level software programming languages, thereby allowing designers to think of

their circuits in increasingly more abstract terms [8] [9].

The creation of HDLs led to a shift away from the transistor and logical levels into

the Register Transfer Level (RTL), which better suited the design flow from a top-

down perspective. The Register Transfer Level not only allowed for a fairly common

physical synthesis agnostic platform (as per abstracting away the design from the

choice of the underlying transistor and gate technology), but also allowed for a way
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to design an IC from a more architectural point of view [10]. Such a point of view

led to more system-wide approaches to the validation and verification challenges.

Further expansion of the integration of ICs (many of them ASICs) to create full

fledged digital System on Chips (SoCs) unveiled a pressing need for system-level

approaches to address not only validation and verification, but also requirements

that were themselves at a system level [11].

The emergence of SoCs (fueled by the need for self contained digital systems) meant

that many ASICs turned into Application Specific Standard Products (ASSP) [12].

These products were and continue to be, ICs performing specialized standardized

tasks typically present in many SoCs (such as buses or encoders/decoders). The

specialized and standardized nature of these ICs is typically underlined by elements

of their design such as an archetypal architecture. Furthermore, such a characteristic

architecture of an ASSP is the natural byproduct of a detailed specification that the

design has followed. The necessity of following and conforming to a specification

(essentially a set of requirements to comply with) is at the core of the design of these

ICs.

1.2 Motivation

Regardless of whether the IC is an ASSP or an ASIC, following and conforming to

a specification is paramount. However, as crucial as this precept is in the design

flow for any IC, usually the task associated with complying with a specification

are quite demanding. The main difficulties are almost always associated with the

ambiguities and the extent of the specification. Specifications are rarely of a formal

nature (ie. described in a logical formulation), but are instead typically produced

in a natural language (ie. English) or in a technical language (ie. a HDL), which

captures requirements in more generic concepts. What is more, specifications are

the starting point of almost all top down design flows, in which the architectural

decisions are taken in early stages [13].

By beginning of the 21st century, technical standards (that is to say, standardized

specifications) had grown to cover most, if not all, of the functional concerns related

to any ASIC (or ASSP). Verification and validation of the functional requirements

had escalated to system level, beyond RTL, in an effort to reduce the iteration

cycle required by successive refinements to fulfill the requirements. In these system

levels (such as for instance, the Electronic System Level (ESL), which is known for

the presence of Virtual Prototypes, the SystemC technical language [14]) and the
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Transaction Level Modeling (TLM) methodology [15], the EDA community has strived

to ensure reliability in functionality by expanding the use of formal methods and by

extending coverage metrics from lower levels of abstraction.

Also by the turn of the millennium, it became discernible that functional require-

ments were no longer the only sine qua non requirements stemming from speci-

fications. Security, safety and power/energy consumption concerns had risen to

rival the sense of priority accorded to functionality, to the point that it had become

increasingly impossible to design an IC with only functionality in mind. Indeed, if

the prototype for an IC did not meet the security provisions or the power or energy

budget, the prototype was to be rejected. Such a heightened importance of non

functional requirements, meant that top down design flows were then in need of

some changes to reflect such an evolution [16].

While the importance of security and safety in ICs (especially so regarding data

protection) is unquestionable, the evolution of the design flow to address pow-

er/energy consumption concerns has shown itself to be a top priority. From the

transistor level up to a system-level, many of the innovations introduced to deal

with the power/energy concerns, have been the result of wide ranging research

leading to the concept of power-aware design. With the advent of the Internet

of Things (IoT), in which ASICs play a central role, these innovations that have

brought up power-aware design are shaping up a renovated ASIC design flow [17].

Not unlike the functionality focused design flows, the focus of power aware design

techniques has shifted towards system-level architectural decision making. Owing to

such a shift, and going beyond the reach of traditional HDLs designed to implement

existing designs, specification analysis (often the first step in top down design flows)

is becoming a focus area in the coming years [18].

1.3 Contributions

The contributions of this doctoral thesis are centered on addressing some of the

challenges of system-level power-aware ASIC design via focus on specification

analysis, for both specifications in natural and technical language [19] [20]. For most

intents and purposes, the intention is to help usher a new stage in the revamping

of top down ASIC design flows. In such a new stage, specifications written in

natural/technical languages are considered the foundational design documents at

the system-level. As such, specifications (whether technical standards or functional
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descriptions) are the main source of information for power -aware decision making,

significantly integrating functionality and power/energy consumption concerns.

This document presents two contributions:

• A response framework to process (parse and analyze) any natural language

specification (in English) in order to unveil the intrinsic power structure of a

prototype that complies with said specification. The originality of the frame-

work lies in its use of semantic analysis techniques and associated rules to

be able to infer the innate power structure that is produced by any prototype

following a functional description, typically found in the specification. This

power structure (represented by a set of numerical parameters) allows for

rapid power-aware exploration of a design, as well as working as a baseline

comparison point for decision making regarding the power/energy consump-

tion concerns. The core of the contribution is centered around the associated

rules that enable the inference.

• A response framework to process (parse and analyze) any technical language

specification (in SystemC/TLM) so as to reveal the underlying power architec-

ture that a Virtual Prototype (acting as a functional description) produces by

the mere fact of implementing its intended functionality. The originality of the

framework lies in a set of algorithms that can extract numerical parameters

describing the underlying power architecture. This power architecture comes

with both benefits (in reduced power consumption) as well as costs (power

and area overhead arising from the need to manage the modules of the IC

with extra logic) and these are meant to be taken into consideration as part of

the Design Space Exploration (DSE) at the system-level in order to decide on

the most appropriate power-aware architecture for the design.

Both frameworks constitute a large step towards system-level power-aware specifica-

tion analysis for ASIC design, as they are able to significantly automate (in as much

as possible) tedious tasks that have made system-level power-aware design a labori-

ous process highly dependent on the expertise of seasoned designers. The assistance

provided by the frameworks to designers is to be thought of as a systematization of

a portion of the designer’s system-level expertise within the frameworks.

Part of the research work that leads to the framework has been previously presented

in several publications that have been produced throughout the doctoral process.

Any content of this document that is not attributed to a third party is either present

verbatim in these publications or is a modified form of some content within said

publications and is therefore consider own work. The publications are listed as:
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1. David Lemma, Mehran Goli, Daniel Große, and Rolf Drechsler. “Power intent

frominitial ESL prototypes: Extracting power management parameters”. IEEE

Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International

Symposium of System-on-Chip (SoC). 2018.

2. David Lemma, Daniel Große, and Rolf Drechsler. “Natural Language Based

Power Domain Partitioning”. IEEE International Symposium on Design and

Diagnostics of Electronic Circuits and Systems (DDECS). 2018.

3. David Lemma, Mehran Goli, Daniel Große, and Rolf Drechsler. “Towards

Generation of a Programmable Power Management Unit at the Electronic

System Level”. IEEE International Symposium on Design and Diagnostics of

Electronic Circuits and Systems (DDECS). 2020.

1.4 Thesis Structure

After this introductory chapter (Chapter 1), the research work laid out in this

document is structured as follows:

• Chapter 2 presents power-aware design as a concept. After a small prelude

containing the rationale behind the concept, the implications and challenges

in the power-aware design realm are put forward. Further into the chapter,

the reader is introduced to the idea of a Power Management Unit (the most

typical response to the management of the power/energy implications and

challenges) with its main defining parameters: the Power Domains (PD), and

the Control Signals (CS) and Power Modes (PM). An effective way to determine

the PMU parameters from a system-level specification (in natural or technical

language) is then shown to be crucial for a successful power-aware design.

• Part I concerns itself with the first contribution (a framework for the processing

of natural language specifications). Part I consists of a theoretical chapter

(Chapter 3) that explains the basics of specification analysis as performed for

those documents when they are written in a natural language (English). In

addition, there is a relevant works section and a presentation of the framework,

based on Information Extraction (IE) and semantic analysis techniques (based

on a recently developed grammar annotation scheme); and an application

chapter (Chapter 4) that shows the applicability of the framework of the

previous chapter to the unveiling of the inner power structure caused by the
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specification in terms of some or all PMU parameters (PD, PM and CS) for

ASIC type use cases.

• Part II deals with the second contribution listed (how to process a technical

language specification in a power-aware fashion). Part II is made of: a theo-

retical chapter (Chapter 5) that explains the basics of specification analysis

as performed for those documents in a technical language at the system-level

(Virtual Prototypes in SystemC/TLM). This chapter also contains a section on

the relevant works in the field and a presentation of the theoretical framework,

based on Design Understanding (DU) techniques and tools; and an application

chapter (Chapter 6) that shows how the theoretical framework presented in

the previous chapter allows for the unveiling of the intrinsic power structure

produced by the Virtual Prototypes, a comparison between potential alterna-

tives and an estimation of the effect of the unveiled power structure in the IC’s

power consumption.

• Chapter 7 brings forth a conclusion to the research work and offers some in-

sights into possible future developments along several research lines branching

from the research work.
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Power-Aware Design:

Implications, Challenges and

Responses

2

„Power has become the number one problem. All

design targets are being constrained by

power[21].

— Gary Smith

(Electronic Design Automation analyst)

2.1 Preface

The proliferation of battery powered devices at the end of the 20th century, cou-

pled with an increased awareness of the need to manage power/energy consump-

tion, have been major causes spurring the development of power-aware design for

ASICs.

While power consumption and energy consumption are not equivalent, they are both

metrics that give information about the fulfilling of the requirements associated with

the physical variables involved in the calculation of power/energy. Since energy is

a variable derived from power (being the sum of power consumption over a given

time period), the latter is the most usual target of many of the techniques developed

by the IC design industry. However, power-aware methodologies also consist of

techniques that help designers manage energy consumption, via the management of

power throughout varying periods of operation, so as to meet any applicable energy

budget. (In this document the word power will serve as the generalizing adjective

that encompasses both power and energy as described above).

Power, as a magnitude for IC design, can be calculated or estimated by the use of

a primary simplified equation. This equation, Eq. 2.1, contains two terms: static

power and dynamic power, which are themselves defined by other simplified

equations with their own terms in Eq. 2.2 and Eq. 2.3. Static power encompasses

12



the dissipation of power produced by the IC by virtue of it being connected to an

energy source. Dynamic power encompasses the dissipation of power by virtue of

the IC switching its components according to operational need.

Ptotal = Pstatic + Pdynamic (2.1)

Pstatic = Vcc ∗ Ileak (2.2)

Pdynamic = C ∗ f ∗ Vcc
2 (2.3)

Inside Eq. 2.2 and Eq. 2.3 are several physical variables whose estimated or

calculated values are related to the physical synthesis of the circuit (such as voltage

(Vcc), capacitance (C), frequency (f ) and current (Ileak). In the case of ASICs some of

these variables are occasionally dictated and regulated in the specification (typically

a technical standard). Regardless of whether or not the variables are directly set in

some specification, the physical synthesis stage of the IC design process requires that

they are known, as they are crucial in the evaluation of compliance with a power

budget.

The terms in the equations are averages (given the simplified nature of the equa-

tions), but such equations could be used to obtain a value for power dissipation for

every transistor in the IC. Such a value would be extremely accurate, regardless of

the fact that is was obtained through the use of averages. This level of accuracy in

power dissipation values is typically not feasible in the current state of IC design,

since the number of transistors is well beyond the millions. However, provided

that the time and computational resources are available, the accuracy of the power

dissipation values can be guaranteed to be extremely high at physical synthesis

stage.

As power/energy consumption became a crucial design requirement, the way to

address the requisite was initially through directly targeting the physically significant

variables that affected power dissipation. The techniques developed to manage the

physically significant variables constituted the core of what became known as low-

power design methodologies [22]. Indeed, by the 1990s and even before that time,

power consumption management was characterized by the use of algorithms and

heuristic rules that minimized power dissipation as much as it was possible. These

algorithms and heuristic rules were focused on lower levels of abstraction (transistor

and gate level) where the variables could be directly managed. Furthermore, the
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ways in which power dissipation was minimized were mostly orthogonal (that is,

independent) of other implications and requirements in the design process.

However, with the growing complexity of ASICs (especially ASSPs), their specifica-

tions began to state requirements that greatly influenced each other. This turn of

events led to low power design methodologies beginning to fall short of the global

integrated approach which came to be required. The EDA industry responded to

the challenge by putting forward a renewed set of methodologies, which became

known as power-aware design. Closely linked to low power design methodologies,

power-aware design and low-power design were not exactly addressing the same

concerns. A power-aware system was (and is) not always a low-power system.

As stated by Unsal and Koren [23]:

It is important to note the conceptual difference between power-aware and

low-power systems. In low-power design, the main goal is minimization of

power. On the other hand, a power-aware system is one in which meeting

power and energy goals is a significant design consideration[...]

Low-power design methodologies are usually part of power-aware design method-

ologies, but do not constitute the totality of them. Furthermore, power-aware design

may even preclude the use of some low power design techniques.

Power awareness in methodologies for IC design is meant to meet the power/energy

requirements and concerns in a comprehensive fashion. In the words of Pedram and

Rabaey [24]:

Just as with performance, power awareness requires careful design at several

levels of abstraction. The design of a system starts from the specification

of the system functionality and performance requirements and proceeds

through a number of design levels spanning across architectural design,

register transfer level design, and gate level design, finally resulting in a

layout realization.

As per the shift to power-aware design methodologies, many of the associated tech-

niques ceased to be only concerned with the direct management of the physically

relevant variables at lower levels of abstraction. In raising to gate level and even

to the Register Transfer Level (RTL), both the detailed information of physical syn-

thesis stage and the ability to directly control the physically relevant variables are

reduced.

In higher levels in the abstraction ladder (for instance, a system level such as the

ESL-Electronic System Level) the accuracy in the calculation/estimation of power
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dissipation is lowered as per the increased abstraction. The reduced accuracy is

the result of lacking the detailed information that is available in physical synthesis

stages. At the same time, the effect on the management of power consumption

of whatever techniques used by the power-aware methodology at hand becomes

increasingly noticeable. In many cases, techniques that are part of the power-aware

design methodology at system-level are less focused on optimization of a given

architecture than they are about being useful to architectural decision making. The

impact of architectural decision making can be shown via a design level ladder

featuring the different the different design stages.

2.2 Implications

As can be seen in Fig. 2.1, the nature of the design level ladder is well represented

by pyramids depicting the power saving opportunity and the optimization effort

involved for each level, from the system level to the physical level. Following a

top-down perspective, it is becomes clear that on a system level, the impact of the

techniques used by a power-aware methodology is at its highest, with the effect

(power saving opportunity) not only decreasing significantly in lower levels of

abstraction, but also requiring much more optimization effort. While the accuracy in

the estimation of the effect at higher levels of abstraction is much lower than closer

to implementation levels (eg. gate level), the dissimilar orders of magnitude of the

estimated effects make it a compelling reason for the EDA industry to focus heavily

on sound architectural decision making techniques.

Architectural decisions typically encompass a process of specification analysis that

is done within a set of processes that the IC design industry labels Design Space

Exploration (DSE) [26] [27]. DSE is a set of processes that attempt to compare

and contrast different architectural alternatives that follow the specification for a

given design. Typically, low abstraction level DSE is the realm of multi objective

optimization algorithms with special focus on finding the optimal solution from

within the different architectural alternatives [28]. In order to perform DSE at a

high abstraction level it is paramount to be aware of the intended functionality of a

system. Such an awareness typically entails knowing how the functional tasks of the

design are implemented [29]. Both the originally devised architectural alternatives

and the potential optimized solutions are presented in terms of the components at

different level of abstraction, as components encapsulate and abstract away many

(if not all) of the design factors present at the set of simplified power equations

previously presented.
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then evident that power management techniques need to be used concurrently for

most IC.

Tab. 2.1: Some Power Management Techniques and Their Impact

Power
Management

technique

Static
Power

influence

Dynamic
Power

influence

Area
overhead

Power
overhead

Impact
on

overall
design

Clock Gating 0 Very high Low Low Medium
Power Gating Very high 0 Medium Medium High
Dynamic (Voltage)
Frequency Scaling Medium High High Medium Very high

While (re)producing an exhaustive list of power management techniques is not

within the purview of this chapter, the techniques listed in Table 2.1 are further

explained in the next paragraphs. These power management techniques are well

known for their impact extending all throughout the abstraction ladder. It is because

of the influence of these techniques on the effectiveness of the PMS that an intelligent

application of them is of extreme importance. The techniques are: Clock Gating (CG)

and Power Gating (PG) and Dynamic (Voltage) Frequency Scaling (DVFS):

Clock Gating (CG): is a technique based on switching off the clock signal for any

given component whenever there is no need for said component to switch its internal

state. The granularity with which the technique is applied can vary from gate level to

RTL and beyond. As the signal under management is that of the clock, the dynamic

power term of the total power equation is the one impacted, whereas the static term

is not. Despite the absence of influence on static power consumption, the technique

is widely used as typical ASICs have extremely large and complex clock trees for

which pruning yields valuable results. CG is typically implemented at RTL or gate

level, but the general principle operates on the behavioral level and the system

level.

Power Gating (PG): is a technique based on switching off the voltage supply

from any given component whenever there is no need for said component to be in

operation. Typically, this technique is based on examining the active/inactive cycles

of components so as to power off those in their inactive cycles. The fact that voltage

supply is cut off from any given component (that is, it is made 0), essentially means

that the impact on the static term constitutes the salient point of the technique. PG,

like Clock Gating, is implemented at RTL or gate level, but its roots are at behavioral

and system level. Unlike Clock Gating, PG greatly affects the static power term of

the total power equation.
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Dynamic (Voltage) Frequency Scaling (DFVS): is a technique by which any given

component of the IC (typically a design element at the RTL, such as a buffer, a

register, an adder, etc.) is run at a certain voltage and frequency value pair that

maximizes its output or general performance while remaining under the power

or energy budget. In general, low voltage-frequency value pairs reduce power

consumption at the expense of performance degradation. However, given that

performance requirements are neither static throughout the operation of the IC, nor

homogeneous for every component, DVFS is a feasible attempt to reach a desirable

tradeoff, typically being a technique in widespread use at the RTL, affecting both

the dynamic and static power terms of the total power equation.

While the aforementioned techniques have a direct influence on physical variables

(voltage, frequency), they also have an indirect effect on them via the architec-

tural impact on ICs produced by the power management logic required for their

application. In order to apply DVFS, CG or PG in an IC, the latter has to contain

proper power management logic, which leads to associated overhead costs (such as

the extra power dissipated by the required by the new logic or the increased area

required by the physical synthesis of said new logic). The associated overhead costs

can be thought of as one of the most evident and inevitable tradeoffs in the selection

of a PMS.

2.4 Responses

It is a fairly common occurrence for the PMS to be carried out by a Power Management

Unit (PMU). An illustrative PMU is made of a component with control over the power

management logic. In ASICs, the PMU is frequently a very simple structure which

drives signals controlling the execution of the chosen power management techniques

as they are applied to control all other components. Frequently containing a type of

Finite State Machine, a PMU has the PMS encoded in its own structure. By being

the vessel than ensures the implementation of the power management techniques,

the joint associated costs of these techniques can be summarized as the overhead

costs of the PMU itself.

2.4.1 Power Management Unit (PMU)

The PMU itself (being a virtual aggregation of the power management logic of an IC)

leads to an increased power consumption, even when one of the typical main goals
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behind the existence of such a unit is to reduce the overall power consumption of the

IC. The overhead costs of the PMU are therefore of great importance following the

corollary behind the statement "spend power to reduce power". Furthermore, the

architectural impact of the PMS, which is represented by the structure of the PMU,

acquires relevancy as it can lead to increased difficulty in validation and verification

tasks both for the PMU and for the overall IC design.

Given the need for a Power Management Strategy for any properly designed ASIC,

the associated costs of realizing that strategy (the implications of power-aware

design) need to be handled carefully within the PMU. The PMU has to be designed in

a power-aware manner, following successful DSE tasks that: effectively deal with the

collateral effects of the PMU on any given ASIC (such as extra power consumption

and endogenous verification effort already mentioned), minimize the expected extra

management logic (reducing the area required for physical synthesis) and ensure

that any concomitant power related decision is made in harmony with any non

power related concern.

Decisions on the validity and proper implementation of the PMS in the PMU are

dictated by how satisfactorily said strategy addresses power related requirements

(for instance, the meeting of a power budget). In order for the decisions to lead

to proper responses that fulfill a power related requirement, the tasks that provide

the basis for the making of those decisions must be not only technically fitting,

but also comprehensive. The rationale behind technically fitting, comprehensive

power-aware DSE tasks leading to sensible decisions is in the global, architectural

impact of the latter.

As a PMU represents the embodiment of the PMS, the architectural impact can be

represented via the influence of the latter on two important notions: the functional

block and the area overhead. These two notions showcase the variables that the

PMS both affects and becomes affected by and underscore the comprehensive nature

of the power-aware DSE tasks required to successfully implement the PMU. As such,

the notions are elaborated as follows:

• A functional block is the label for the constitutive elements of components, a

label that can be applied in different stages in a design flow. Being so widely

applicable as a concept means that a functional block can be: a collection

of gates and other similar elements working together in combinational or

sequential logic (at the RTL), a set of algorithm-implementing objects repre-

senting an assortment of units at RTL (when considering the concept at the

ESL, where algorithms are implemented) and even a series of self contained
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system level components seemingly working as blackboxes (at the specification

based system level).

In a Gajski-Kuhn Y diagram [34] such as the one depicted in Fig. 2.4, the

concept of functional block is reflected by the bisecting domain labeled "Struc-

tural". Along the arrow (from the center to the most external node) that

states the elements of the structural domain, every element is matched to an

abstraction level (Transistor Level, Gate Level, RTL, Algorithmic Level, System

Level). The same type of matching is available for every element in both

the arrows for Behavioral Domain and Physical Domain The Y diagram is a

graphical way to understand the importance of the concept of functional block

not only within the Structural Domain, but also within the Behavioral and

Physical Domain.

The elements of the Structural Domain correlate with elements of the Behav-

ioral and Physical Domain for each level. Such relations only underscore the

relevance of the functional block for a comprehensive analysis of the design

process. Typically, the highest level of abstraction in the design ladder (the

System Level) ties in the functional block concept to the specifications of the

design, as well as relating it to the global physical partitioning of the chip that

the specification may require.

Behavioral Domain Structural Domain

Physical Domain

Specifications

Algorithms

Register Transfer

Boolean Logic

Transfer Functions

CPU, Memory

Processing Subsystems

Logic Units, Registers

Gates

Transistors

Physical Partitions

Floorplans

Module Layout

Cell Layout

Transistor Layout

Fig. 2.4: Gajski-Kuhn Y Diagram
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For ASICs or ASSPs, the specifications typically describe the functionality

required of the circuit through listing the algorithms that define it, through

naming the functional blocks that perform the functional tasks required of the

design and also through the placement of relevant system wide constraints

(eg. a power/energy budget, a security or safety check). In this document, the

system wide constraints that become the focal point are those related to power

management. However, a power budget is not the only system wide constraint

that relates to power management.

There is a systemic influence of the power management as a concern in any

design process. Such systemic influence means that the implementation of

the power management strategy for the IC should be taken so as to comply

with a power budget, security/safety checks, while also properly dealing with

the inevitable extra circuit logic required. The additional logic is typically an

undesired byproduct of the implementation of the PMS, one that should be

minimized as much as possible.

When considering the impact of the extra circuit logic, a power-aware design

flow usually leads to a trade-off. The more sophisticated (and potentially

more power-aware) the PMS, the bigger the extra circuit logic required. This

rule of thumb is not meant to be taken as a strict correlation, but nonetheless

serves to illustrate the need for a balance between two potential factors: power

efficiency and extra management logic. So as for a better understanding of the

impact of the extra power management logic, such an impact is described by a

second notion: area overhead.

• The area overhead of the implementation of a PMS is a concept that is repre-

sentative of the amount of transistors, gates and other functional blocks that

said implementation requires. This amount is, naturally, in addition to what-

ever was required for the implementation of the functionality of any intended

design, which is consistent with the use of the word "overhead". Given the fact

that area is a constraint in the synthesis of current (and foreseeable) ASICs,

any overhead in this metric is to be carefully dealt with.

While the concept of area overhead is closely linked to lower levels in the

abstraction ladder, the effects can be observed beyond the Gate Level or the

RTL. Not unlike the notion of functional block, the area overhead resulting

from extra power management logic can be considered throughout the levels

of the Gajski-Kuhn Y diagram. Once again, the prototypical functional block for

each level can be considered as the constituent element of the implementation

of the power management logic.
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Among the most important decisions that underpin the architectural impact of the

power-aware DSE tasks that influence the notions above are: a) Power Domain (PD)

partitioning and b) the setting of Control Signals (CS) and Power Modes (PM). The

preceding decisions are naturally based on the power structure that is revealed by

inspecting the specification, which yields PD, CS and PM. The frameworks that allow

for this inspection to reveal the underlying power structure are the contributions of

this thesis, laid out in the theoretical chapters of Part I and Part II.

So as to clarify what is meant by PD, CS and PM, the following are non exhaustive,

but clear definitions:

2.4.1.1 Power Domain

A Power Domain is a collection of functional blocks that share the same voltage

source and can be considered a single group whose power can be managed indepen-

dently from other parts of the design. For example, functional blocks that operate

whenever a device is powered are typically part of an Always-ON Power Domain,

whereas other functional blocks that are activity dependent are typical part of other

Power Domains.

2.4.1.2 Control Signal

A Control Signal is the way in which a Power Domain is driven ON/OFF (or into a

different power state) as per dictated by the PMS. For many designs it is reasonable

to assume that each Power Domain will have at least one Control Signal to drive it,

but this Control Signal could potentially have different values leading to independent

and concurrent control of several of those Power Domains.

2.4.1.3 Power Mode

A Power Mode is a given set of the power states (ON, OFF, other) of the Power

Domains during the operation of a circuit. It is therefore, a way to identify the

system wide operational status of a design. Examples of Power Modes are: ACTIVE,

ON, IDLE, SLEEP, OFF, etc.
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2.4.1.4 Power Domains, Control Signals and Power Modes and the PMU

The revelation of the implicit power structure is the basis for the handling of the PD,

CS and PM that are associated with said power structure. Decisions relating to how

the PMU is to properly address the management of power rely on the number of PD,

CS and PM. Consequently, in the following paragraphs the reader is very succinctly

introduced to the basics of both PD partitioning and the setting of CS and PM.

2.4.1.4.1 Power Domain Partitioning Power Domain (PD) partitioning is a process

that deals with the organizational structure supporting the PMS. In essence, Power

Domain Partitioning is the process by which such structure is decided upon. As a

power-aware DSE task, it is typically the first critical decision making process. As

such, Power Domain Partitioning is a key step in setting the basic architecture of the

PMU.

The essence of Power Domain partitioning is, as would be expected, the concept

of a Power Domain (PD). How to arrange the functional blocks in different PDs is

the core of the Power Domain partitioning decision. As illustrated by Fig. 2.5, the

process chiefly sorts the different functional blocks of a design into groups (the Power

Domains). The power properties of these groups (such as, for instance power states-

on,off,standby) can then be managed independently from each other. As evidenced

in the figure, three functional blocks (Block C, Block D and Block E) can be part of

the same power domain (Power Domain 3) if they share the same Power State Table

(PST). However, this may not be desired if the designer wants to manage each of

the blocks individually. A decision on the convenience of such an arrangement (the

Power Domain Partitioning scheme) is the designers’ responsibility.

Typically a fine grained Power Domain partitioning scheme leads to many PD (the

maximum would be given by the number of functional blocks, with one PD per func-

tional block) and an unavoidable area overhead. A more coarse grained approach to

Power Domain Partitioning usually leads to a scheme with reduced area overhead

and fewer PD, but at the cost of missing power consumption reduction opportunities.

The opportunities for power consumption reduction are missed on account of the

impossibility to control the power states of each functional block individually, since

said blocks will be part of the same PD.

To group certain functional blocks together has a deep impact not only on power

consumption, but also on further verification efforts, both for the overall design,

and for the PMU executing the associated power management strategy, as shown by

Agarwal et al. [36] and Wang et al. [37]. The deep impact is also felt in the overall
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operation of said PMU. In essence, CS and PM are numbers defining the behavior of

the PMU, which, in itself, represents the way the PMS is put forward.

For the PMS to be properly deployed, the PMU additionally needs to have the system

Power Modes (such as, for instance, IDLE, ACTIVE, INACTIVE modes) and Control

Signals (which drive the power domains) set. Both PM and CS are widely influential

PMU design parameters. Regardless of how the decision about the determination of

the aforementioned parameters is reached, PM and CS will reflect the complexity of

the PMS, which it itself signals the complexity of the PMU.

Just as is the case of a power domain partitioning scheme, the number of Power

Modes and Control Signals are important because they are usual indicators of the

power intent (that is to say, the power management strategy). The impact of both

PM and CS on the overall costs (mainly amounting to verification time, power

consumption and area overhead) of a PMU is as important as that of the Power

Domain Partitioning process. This impact means that the PM and CS need to be

determined as early as possible in the design flow [38].

A suitable set of assumptions are necessary to keep the approach to determining

(and thus setting) both PM and CS as simple as possible. For instance, a simplified

version of the process can have as premises: a single CS can power ON/OFF a Power

Domain (no complex individual Power States, such as IDLE or SLEEP); and a Power

Mode represents a system wide state (one where the state of each Power Domain is

ascertained), which can be ACTIVE, IDLE, SLEEP or similar.

As a graphical example, please consider Fig. 2.6 and Fig. 2.7, which show a Power

Domain Partitioning scheme and a table summarizing the Power Modes and Power

States for a device. These figures are taken from the description of an IoT device

which has a RF transceiver and an ARC EM processor, suitable for a well known

3GPP standard [39].

The figures show 6 PD (AON, PD1, PD2, PD3, PD4, PD5, PD6) in the bottom

rows, 3 PM (ACTIVE, SLEEP and STANDBY) on the columns, and the Power State,

controlled by a CS, for each of the PD (ON, OFF, "rentention"). This a typical Power

Management scheme, consisting of enough PD, CS and PM, to presumably guarantee

a low power consumption for a battery powered device without needlessly increasing

the complexity of the PMU (which is on the AON-Always ON domain).

Research has been conducted for the complexity costs, concluding in a rule that

basically leads to two statements:
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Fig. 2.6: An IoT Device’s Power Domain Partitioning Scheme from [39]

Fig. 2.7: An IoT Device’s Power Modes and Power States from [39]

• The number of PM and CS can be used to predict the power consumption of the

PMU (with the CS having a greater impact than the PM, due to more CS requiring

more area in silicon which will dissipate more energy)

• The number of PM and CS correlate greatly with the time needed to be spent

on the verification of the PMU (with the PM having a great impact than the CS,

because of the implications of PM in the number of transitions to validate)

Because of those two statements, the designers need to be careful about choosing the

most appropriate Power Partitioning scheme, as well as with choosing the amount
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of Control Signals and Power Modes that the PMU will implement. The fact that the

PMU itself needs to be considered another functional block in an Always ON domain

also highlights that the decisions need to be taken before the RTL, that is, before the

microarchitecture of the system has been established.

The most natural way to decide the setting of PD, CS and PM is, therefore, to focus

on a higher level of abstraction: the system level. In said level, the most typical

design documents available are: a natural language specification (typically in English)

or a technical language specification (typically in SystemC/TLM).

As stated in the Introduction chapter to this document, this thesis presents two frame-

works that allow for the power structure that is intrinsic to a design to become available

to those responsible for implementing the PMS within the PMU. The PD partitioning

scheme and the setting of the CS and PM depend on the availability of the implicit

power structure for the cases of a design following both a natural language speci-

fication (which is dealt with in Part I) or a technical language specification (dealt

with in Part II).



Part I: Natural Language

Specifications
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Natural Language:

Preliminaries, Relevant Work

and Response Framework

3

3.1 Preliminaries

It is fairly common for designers to have specifications as their initial design docu-

ments when they are following a top-down design pattern. It is also common that,

even before a specification is written, there are algorithms, flow or block diagrams

that make intuitive sense to designers. Unfortunately, the very essential informal

design documents that constitute the basic design idea are rather ambiguous and

usually come as a response to a set of requirements that have to be met. When

the way in which these early stage documents concerns themselves mainly proper

elicitation of the requirements, the documents are best approached by requirement

engineering [40].

If a specification is available, it is frequently one written in a natural language, such

as English, either in an informal descriptive tone or a more formal tone, such as

the case of a (technical) standard, very common for ASICs. In the latter case, it is

also quite likely that there exists a reference implementation described within the

standard or in a closely associated, yet separate document. Standard specifications

(usually shortened to standards) are often described as documents expressing a series

of characteristics provided by an implementation. For digital circuits and related

Systems-on-Chips (SoCs) these characteristics pertain mostly (but not exclusively) to

functionality and are typically covered in one or several chapters of the appropriate

standards. The designers are expected to comply with and follow the standards, so

as to produce validated implementations.

Traditionally, standards are long dense documents with tables, diagrams and text

detailing the underlying several aspects, attributes and features of blocks/compo-

nents/elements of a system. Because of the sheer volume of information contained in

a standard, the examination of one is almost invariably done by experienced design-
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ers. This process includes the laborious elicitation of relevant data and knowledge

from the contents of the standard, as well as any needed interpretation.

Given the opportunity, streamlining the laborious process of data and knowledge

elicitation appears to be a natural step forward. To decrease the effort required

for the manual elicitation of data and knowledge, Information Extraction (IE) is

typically used [41]. As a well known way to push for the automation of the analysis

of standards IE consists of a series of techniques to bring out relevant data. As

a general purpose toolset, IE features two common approaches are: i) domain

specific Information Extraction or ii) Open Information Extraction (OIE). As the name

of the former suggests, the approach based on it, focuses on retrieving relevant

information (facts) only on a very specific field (domain). This is usually aided by

a robust concept corpus (typically, an ontology) and by the use of other additional

knowledge sources [42] [43]. Contrary to this, OIE aims for general all purpose

information extraction or retrieval from texts of varied topics, styles and sources. For

OIE, there is a tradeoff between precision (retrieving all the useful facts) and recall

(retrieving only the useful facts). For a succinct explanation of the concepts, please

take into account that: i) precision may be defined as the number of true positives

(the useful facts), divided by the number of selected elements (the total number

of facts retrieved), ii) recall may be defined as the true positives (the useful facts)

divided by the number of relevant elements (the total number of relevant facts). For

both precision and recall the number defining them (the score) is between 0 and

1. Both these values are usually provided as a means of assessing the quality of the

results provided by the OIE tool, but do not ensure that the results are of any use for

further understanding or reasoning.

A useful fact is one germane to the understanding or description of a text based on

its domain. For instance, a fact such as "The circuit is internally connected through

wires" is typically too evident to constitute a useful piece of information, whereas

"The circuit has a output serial port" is a fact that provides significant information

that can be used to understand the text. Analogously, relevant facts are considered

facts that are not tautologies (redundancies) or grammar based constructs devoid of

significance in the context of the domain. For instance, a fact such as "The digital

circuit consists of digital components" is not a relevant fact, since it is redundant,

whereas "The digital circuit consists of an encoder and a UART" is a relevant fact since

the added information leads to further understanding.

If OIE is used for domain specific information extraction, the desired recall is usually

of higher importance than the desired precision. This is so because a high number of

relevant but not useful facts can be discarded if needed further down the processing
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tasks, whereas non relevant facts can be harder to discard if they are firstly grouped

together with relevant ones. However, a high number of both precision and recall

(such as for instance, a high F1 score) are generally desirable, even if rather difficult

to attain.

Approaches using OIE tools are more frequently researched than those using the

domain specific counterparts. Two key reasons behind this fact are: a) the desire

to make the approach as universal as possible and, b) the lack of an ontology or a

similar domain specific knowledge source. Notwithstanding the preference for OIE

tools, whatever approach to the analysis of standards can also work with domain

dependent IE tools. If a domain dependent IE tool is available and is wisely used, it

will most likely lead to more refined scrutiny than the OIE alternative.

OIE is routinely characterized as a task, in which the techniques used are grouped

into diverse subtasks (Entity Extraction, Relationship Extraction, Word Sense Dis-

ambiguation, Coreference Resolution, Terminology Extraction and many more than

tightly relate to Natural Language Processing (NLP)). Without entering into too much

detail, two of the tasks listed above are extremely central to analyzing a text with

semantic understanding as a goal: Entity Extraction and Relationship Extraction. For

a short explanation it can be said that the former retrieves relevant (for whatever

domain) entities (traditionally considered concepts-self standing notions), whereas

the latter retrieves the association that binds the entities.

For a clearer explanation of both subtasks, please consider the following sentences

from the README file (an informal specification in natural language) of an example

FIR filter, a very basic design that comes with the official SystemC distribution suite

from Accellera [44].

“The filter is a 16 tap FIR filter(fir.cc). The test bench feeds simply ascending values into

the FIR(stimulus.cc) and the output is sampled (display.cc) and displayed with print

statements.”

Entity Extraction will yield a series of entities that can be pruned later, either by

humans or by some automated procedure. A list of entities may be similar to that in

Table 3.1. Here, anyone familiar with the field of digital circuit design will notice

that fir and fir.cc refer to the some entity, not unlike the case for output and display.cc

and value and stimulus.cc (which refer to the input of the circuit). Because of these

equivalences, refined Entity Extraction leads to semantic entities, that is to say,

entities which are not mere language artifacts, but meaningful concepts within the

domain.
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Tab. 3.1: Entity Extraction

display.cc
fir.cc
fir

output
print

statement
stimulus.cc
testbench

value

Tab. 3.2: Relationship Extraction

Semantic Entity 1 Type of relationship Semantic Entity 2

print associatedWith statement
Fir associatedWith fir.cc
fir associatedWith stimulus.cc
Fir hasDeterminer the
statement hasQuantifier multiple
value hasQuantifier multiple
Fir hasDataValue 16
fir hasDeterminer the
output hasDataValue the
Fir hasQuality Tap
tesbench hasDeterminer the

Relationship Extraction will reveal the associations between the semantic entities.

This means, how the semantic entities relate to each other. A common format

for this may be seen in Table 3.2. The most typical relationship can be seen as a

simple association associatedWith, but there is also a numerical association hasQuan-

tifier, hasDataValue and even more syntactic type of link hasQuality, hasDeterminer.

This presentation format is also known as triples and constitutes the most typical

presentation format for information facts output by OIE tools.

At this point it can be said that Entity Extraction is a subtask of OIE that is linked

very closely to elucidating the functional blocks of a digital circuit design. This close

link between Entity Extraction (essentially its semantic concepts) and obtaining the

functional blocks of a circuit thus links the former to the setting of PD, as it has been

previously explained how functional blocks are the constitutive elements of a Power

Domain.

Similarly to the case of Entity Extraction and the setting of Power Domains, Relation-

ship Extraction is associated with the setting of Control Signals and Power Modes.

The reason behind this association lies in the fact that Relationship Extraction links

semantic entities and these represent the functional blocks. Since functional blocks

are the forerunners of the Power Domain, the links between functional blocks (which

are characterized by the semantic entities) can be thought of as crucial information

to properly notice the Control Signals and Power Modes for the digital circuit.
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9), whereas the recall can be considered the average of 0.60 (4 out of 6) and 0.8 (4

out of 5). It is therefore noticeable that the recall is higher than the precision, which

falls under the preferences stated above for OIE tools applied to domain specific

scenarios.

3.1.1 Power-aware Interpretation

Once the semantic entities, as well as the relationship between them are known, not

only a flow/block diagram can be built, but it can be interpreted in the context of

power-aware design. For instance, following Fig. 3.1, a designer can confidently

conclude the following:

• The FIR filter consists of 3 functional blocks that are prime candidates for 3

Power Domains: stimulus.cc, fir.cc and display.cc.

• The aforementioned 3 functional blocks should be controlled independently of

each other, considering the sequential nature of the information flow, leading

to 3 Control Signals, one per each Power Domain.

• The FIR filter consists of at least three stages: the stimulus stage (where the

input is fed to the filter) the filtering stage (where the filtering takes place)

and the output stage (where the results are shown in the output). These

stages happen concurrently, in spite of the sequential nature of the information

flow, leading to at least 4 Power Modes: one in which the FIR filter is in full

operation, one in which it is not operative at all, and two others in which either

stimulus.cc or display.cc are inactive due to lack of input or lack of processed

information to show, respectively.

The above interpretations are a result of the expertise possessed by a human designer.

Later in this chapter, the proposed response framework showcases how similar

interpretations can be achieved by the codification of the some of the expertise and

the reasoning into a set of rules.

Based on how the power-aware interpretation above uses the information provided

by OIE, it is reasonable to consider OIE as a more abstract way to gather information

from a natural language specification for a variety of uses. This is why the next

section looks at OIE and related NLP techniques in the broader context of specifica-

tion analysis for both power-aware design and other related design tasks at system

levels.
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3.2 Relevant Work

The power of IE (both OIE and domain dependent) is why it is at the core of most

automated (or semi-automated) attempts to address the issues of natural language

specification analysis, especially those related to extracting and then addressing

relevant functionality requirements or concerns. However, it has been shown that IE

techniques can also be valid approaches to dealing with other matters within the

analysis of standards. Some research has shown that IE techniques are appropriate,

for instance, as aids in the verification process of digital circuit systems according

to a standard, as shown by Harris et al. [45]. Moreover, some other works have

showcased the usage of IE to deal with other concerns within broader and more

generalized examinations of specifications, such as the work of Singh et al. [46] and

Shankar et al. [47].

For the most part, the work on IE for specification analysis (of which the works

cited above are shining examples) has a main goal: to unveil the structure that the

specification imposes on any design complying with it. Whether the focus is on: how

to use the unveiled information to verify, through assertions that a digital circuit

design is compliant with a specification (as is the case of Harris), or on how to

ultimately create a Knowledge Base from the information unveiled (the case of Singh

and Shankar), the process is mostly concerned with the extraction of relevant facts

with high precision, even at the cost of some recall.

The closest (so far) that research has got to the usage of IE techniques for power-

aware DSE and for the extraction of the power structure innate to a specification

seems to have been when the bases of the work of Singh were extended to deal with

system level power estimation [48]. In said research work, the main concern was to

estimate power from a given description, with no attempt to use the information

extraction to uncover the innate power structure defined by the specification under

analysis.

Regardless of how the analysis of the specification is performed, it is a commonplace

scenario for designers in charge of system level power-aware design to conduct DSE

after having scrutinized the natural language specification. Potential alternative

design structures conforming to the specifications are then the result of the creative

ingenuity of the designers. These alternative design structures are ordinarily consid-

ered early stage solutions in need of further evaluation. Such further evaluation of

the alternatives is a task of DSE processes, which also allow designers to analyze

latent optimizations for any selected alternative and even to ”discover” new varia-

tions of said alternative that may be suitable for varying scenarios. The byproduct
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of this evaluation task (the generated knowledge) is an extremely valuable asset

that typically remains within the individual or group that produced it, generally in a

visual representation (such as UML), as is described by Liehr et al. [49].

The holistic and expertise dependent nature of natural language specification analy-

sis has led many to turn to ways to address the unsystematic and ambiguous nature

of said specifications. One explored avenue has been the Expert System (ES). ES

represent an attempt to mimic the way knowledgeable humans (in this case, de-

signers with expertise) parse the specification and make sense (by reasoning) of the

information contained therein. Robert Steele, in the late 1980s posed one of the first

attempts at harnessing the power of an ES to help with digital circuit design [50].

His rationale was that designers’ expertise typically shows itself in deep unsystematic

knowledge whose storage, dissemination and further reuse were rather difficult for

a Computer Aided Design (CAD) tool to apply on its own. For that to happen, the

CAD tool needs to have understanding and command of information sources such as

Knowledge Bases and Ontologies, as well as of concepts such as inference.

Unfortunately, while the previous concepts have been (and remain) subjects of

research, the extent by which they are used by humans is still not matched by

semi-automated machine based methods. The research line "inaugurated" by Steele

was later explored (for example in [51]), but it never dealt with system-level design

concerns, because at the time (early 1990s), the system levels were not a focus of

research.

The use of information sources like the ones mentioned above within a semi-

automated system (in many cases, Intelligent Decision Support Systems-IDSS) in

the realm of EDA has been limited due their unavailability, general incompleteness

and inadequate upkeep. As is the usual case with documentation of technical na-

ture, the curating tasks associated to it are sadly relegated (whether consciously

or unconsciously) in the list of priorities. Since properly curated information is the

backbone of insight and expertise, Knowledge Based Systems (KBS) that try to mimic

the reasoning, inference and matching abilities of humans are often limited by their

inadequacies or limitations in particular knowledge domains.

Notwithstanding the apparently bleak outlook of ES for the IC design field, ES

remain a very straightforward choice connected to IE. ES are the most natural choice

for a KBS to yield useful and reproducible results in specification analysis done as

part of the Design Space Exploration (DSE) process, as ES attempt to condense the

available expertise into machine based reasoning, inference and decision making.

Outside the realm of IC design, ES are reasonably common within diverse fields such

as accounting [52], medicine [53] and engineering [54].
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Other early attempts at introducing ES to the realm of IC design, such as the work

of Subrahmanyam [55] and Wu et al. [56] well were received, but the interest in

continuing the research ideas dwindled over the 1990s. There are several reasons

for this decreasing interest, but arguably the most evident is that implementations of

ES have not been able to materialize the level of automation and universality once

envisioned. However, this does not detract from the powerful nature of ES based

solutions for specification analysis and their potential application to power-aware

design at the system level.

In an endeavor to prove the validity of the ES approach for specification analysis for

power-aware design at the system level, in the next section, an ES based framework

is presented as a response. The overall goal is to be able to unveil the power structure

innate to the specification, thus having a baseline from which to aid in setting the

Power Domains as well as in setting the Control Signals and Power Modes for the

Power Management Unit to implement.

3.3 Response Framework

3.3.1 Architectural Overview

The response framework is ES based. The ES takes its input from IE tools applied to

natural language specifications, and produces outputs that yield valid Power Domain

Partitioning schemes, as well as validated sets of PM and CS. The system is a rule

based tool that analyzes the text of a specification and seeks to automatically process

the information obtained via the analysis in a way that resembles that of an expert

designer. The reasoning of a seasoned designer (which is based on the expertise

accumulated) is the way valid PD partitioning schemes and validated sets of PM

and CS are obtained. The main contribution of this framework is, then, the way the

rules are encoded to mimic the type of analytical process with which an expert designer

would approach the specification.

The general architecture of the framework (depicted in Fig. 3.2) is summarily

described through a block diagram. In such a block diagram, the main assumption

of the system is clear: the Selected Input (sentences) are extracted from General

Input (Specification) to be later fed to the Information Extraction process. This

extraction task is not part of the ES (which is enclosed by a dash lined rectangle box

in the figure) and is done by an OIE tool following the principles previously outlined.

While such a thing seems to be in direct opposition to the intention of automated
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3.3.2 The Stages of the Response Framework

Let the case of an MBus device be considered as the running case. MBus is a mid

2010s development of a bus architecture aimed at low power consumption and

at the application of power-aware principles [57]. The MBus authors provide a

standard specification [58], as well as a reference implementation described in

natural language [59]. By going through the execution flow for the ES, how the

PD Partitioning Scheme as well as the setting of the CS and PM are obtained will

become readily apparent.

So as to familiarize the reader to the kind of sentences functioning as Selected Input,

some are listed below:

Selected sentences from the standard specification:

• For the purposes of this document, each MBus node has two modules: (i) The

block that interfaces with the bus itself—we define this as the Bus Controller—,

and (ii) the block that comprises the rest of the node—we define this as the

Layer.

• With MBus, a completely power-gated node can seamlessly awaken its Bus

Controller with no special assistance from the sending node or the mediator

node.

• A Bus Controller can filter addresses, only waking the Layer for a message

destined for that node.

• MBus edges can also be harvested to return both the Layer and the Bus

Controller to sleep mode.

Notice that the sentences above are quite descriptive and relatively verbose. They

have been extracted from the Chapter "Power Design" of the standard. Owing to

their verbosity, which is typical in standards, these selected sentences are relatively

challenging to parse for relationship extraction. The verbosity tends to require

more parsing prowess from the OIE tools, because each sentence contains words

(such as seamlessly, special or harvested) whose relationship to the entities is not as

straightforwardly unveiled as is the case for Part of Speech (POS) tokens, such as

verbs or adjectives in close proximity to a noun defining those entities.

The challenges posed by the proper selection of the sentences leads to incorporating

into the list some other selected sentences from the reference implementation (which

is also a specification for the purposes of the response framework). Among those

further selected sentences are:
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• The M3 MBus implementation defines two major components: a Bus Controller

and a Layer Controller.

• The bus controller understands the MBus protocol and presents a simple

word-wide interface to higher layers.

• The generic layer controller provides a register file and a memory interface,

sufficient for most simple devices.

• In addition, the M3 MBus implementation requires some support blocks: a

Sleep Controller, a Wire Controller, and an Interrupt Controller.

• If the layer controller is powered off, however, the bus controller must wake

the layer controller.

Notice that these other selected sentences exhibit a simpler pattern. Not as verbose

as those selected from the Standard, the words in these sentences are mostly nouns,

verbs and adjectives (in terms of POS tokens), within a mostly Subject-Verb-Object

(SVO) order that reduces the parsing prowess require to parse them.

It is also important to notice that the selection of the sentences is a process than

could potentially incur in automation at some point in the future. However, said

process of selection would require considerable use of machine learning techniques

that are still too onerous (in terms of computational complexity), which constitutes

the main reason why this step is not automated.

Once the Selected Input has been defined, the way the response framework is

implemented responds to the following stages:

3.3.2.1 The Information Extraction Stage

The Information Extraction (IE) stage is where the processing of the sentences fed

into the ES takes place. The main goal of this stage is to identify the functional

blocks and their connection from the entities and relationships extracted from the

Selected Input.

The IE task mainly performs the subtasks of Entity Extraction and Relationship

Extraction, leading to a list of relevant entities and their relationships. The list is

represented by triples of the form [Entity 1]-[Relationship]-[Entity 2]. The triples

are then an input to the Reasoning process.

The IE process is automated, although its output (the triples) is not meant to remain

unsupervised. The aptness of the triples for their inclusion as input to the Reasoning
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process should be ascertained by a seasoned designer. Human intervention is only

required to adjust the depth and inner workings of the IE tasks before usage and not

on a continuous basis. The adjustments are intended as a way to produce a better

set of triples for further analysis.

In order to explain how this IE task works in further detail, it becomes necessary

to introduce the reader to more specialized concepts in the realm of NLP and com-

putational linguistics. These concepts and how they shape this stage are explained

next.

3.3.2.1.1 Natural Language Processing and Universal Dependencies As very few

ontologies have been developed in for ASIC design [60] [61], non ontology based

approaches are to be used. OIE approaches, owing to their universality need to be

tailored to better meet the needs of those performing specification analysis. This

tailoring can be done through a suitable use of a Dependency Grammar (DG) scheme,

one that can better capture the semantics of the sentences under analysis. One such

DG scheme is that of Universal Dependencies (UD) [62].

UD are a novel way in which linguistic entities in a sentence (typically Parts of

Speech tokens) are related to one another based on the subordination of functional

entities (verbs and adjectives, for instance) to content entities (nouns, for instance).

This dependency style is better suited for the type of semantic analysis used in

OIE than traditionally purely syntactic DGs [63]. UD has been recently used for

OIE, showing promising results [64], specifically through the implementation of

a Predicate-Argument extraction tool that is usable as part of a NLP approach to

specification analysis.

The salient point of the UD paradigm is that POS tokens are labeled in a way

that gives content words the role of central nodes in the dependency hierarchy, as

opposed to giving said role to function words. In UD, content words are considered

relevant standing notions (for example, POS tokens such as nouns) are considered

the master nodes to which the other nodes (for example, adjectives or verbs) refer

to.

In order to better analyze the UD structure of a given sentence, it is useful to utilize

two computational linguistic concepts: Predicate and Argument. In the context of

linguistics, predicates are verbs and their auxiliaries and arguments are other words

(tokens) that give meaning (semantic sense) to the predicate. These concepts can be

extracted using UD as a basis.
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They are preparing my older son for kindergarten

root

aux amod

nmod:poss

ARG1

PRED

ARG2
ARG3

Fig. 3.3: Example of a Predicate-Argument Extraction based on UD

In Fig. 3.3 there is a simplified presentation of how predicates and arguments can

be extracted with the UD scheme being used as the underlying structure in the

extraction. In the figure (that appears in the documentation for the aforementioned

Predicate-Argument tool), the following phrase is analyzed:

"They are preparing my older son for kindergarten"

The 3 argument phrases are extracted as "They", "my older son" and "kindergarten",

with the predicate phrase being "are preparing". Within the "my older son" argument

phrase the token "my" is suitably labeled with the UD label nmod:poss (for a nominal

possessive modifier), whereas the token "older" is labeled as a amod (for a nominal

adjective modifier). Additionally, within the predicate phrase "are preparing", "are"

is labeled a aux (for auxiliary of the predicate root "preparing")

For the processing of the Selected Input, a Predicate-argument Extraction tool that

uses UD [65] is the tool of choice. Regardless of the perception of the linguistic

community over the usefulness of the UD paradigm, it has been proven useful for se-

mantically oriented analysis, such as the one required for specification analysis [64].

The tool follows the following set of directives:

1st directive: Predicate root extraction

Here, UD labeled tokens of the type nsubj, csubj, nsubjpass, csubjpass (all of them

denoting nouns, subjects or subject modifiers) or of the advcl or acl type (adverbial

clauses or finite clauses modifying nouns) are prime candidates for predicate root.

Those tokens of the conj type (denoting a conjunction of two nouns) are also prime

candidates.

2nd directive: Argument root identification
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Here, UB labeled tokens of the type nsubj, csubj, nsubjpass, csubjpass (which denote

nominal nouns and modify the previously identified predicate root) or of the type

nmod and advmod (which are nominal modifiers of the previously identify predicate

root) are identified.

3rd directive: Argument resolution

In this step, the tool extract and manages (does resolution) of additional argument

roots, based on the understanding that:

-a UD labeled xcomp (a clause that acts as a complement to a verb without its own

subject) are not argument on their own right, but are instead subject to the root

token they complement.

-a UD labeled acl is related to the argument root that it modifies.

-a UD labeled conj of an argument root is in itself an argument root.

4th directive: Predicate phrase extraction

Here, the dependency tree of the predicate is established. This means that the

structure of the predicate phrase is established in relation to the predicate root

extracted.

5th directive: Argument phrases extraction

Here, the dependency tree of the arguments are established. This means that the

structure of the predicate phrase is established in relation to each argument root

extracted.

Let one sentence from the Selected Input be taken for the same process outlined in

Fig. 3.3:

The M3 MBus implementation defines two major components: a Bus

Controller and a Layer Controller.

In seeing Fig. 3.4, it becomes clear that the power of UD for general POS token

analysis can be properly harnessed for its usage in the ES. Yet, the above only shows

how a sentence can be semantically parsed for appropriate content thanks to the

Predicate-argument tool. An explanation of the internal rules that form the Relation

Extraction subtask of this stage is next.
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The M3 MBus implementation defines two major components:

root

nsubj

compound

nmmod

amod

ARG1

PRED

ARG2

a Bus Controller and a Layer Controller

compound compound

ARG3 ARG4

Fig. 3.4: Output of a Predicate-Argument Tool for Part of the Running Case

3.3.2.1.2 From Universal Dependencies to Triples To go from the Predicate-Argument

tool output to the triples containing the knowledge in the Relation Extraction task,

the output of the tool should be considered following a set of internal rules. The

application of this set of internal rules highlights how the semantically oriented

nature of the UD scheme and the Predicate-Argument extraction can be successfully

used.

The internal rules have been devised from a heuristic approach that attempts to

mimic the reasoning and conceptual understanding of a human designer. Given the

well known difficulties in the modeling of expert reasoning (for instance, as part of an

Expert System) [66], the internal rules are always subject to improvement efforts. As

such, the internal rules should be considered as a validated approach to knowledge

acquisition from NLP based specification analysis and not as an immutable set of

information extraction criteria.

Furthermore, the internal rules have been devised so as to use make sense of

UD labeled tokens within the ASIC domain and, as such, represent one of the

fundamental cogs in the machinery of the framework. Without the internal rules,

whose authorship belongs to the document writer, it would not be possible to use

OIE (with UD based NLP) as a viable approach to specification analysis in the ASIC

design field. The viability of the approach rests on the internal rules being able to

elicit useful facts in the form of triples.

A non exhaustive set of internal rules are listed as follows:

- Predicate phrases are to be considered the semantic link between two concepts (a

functional block and another functional block, a functional block and a component

or a functional block and its properties, etc.). As such, predicate phrases constitute
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M3 MBus implementation defines two components.

Component of MBus implementation is Bus Controller.

Component of MBus implementation is Layer Controller.

Fig. 3.5: Domain Specific Triples from Part of the Selected Input

the relation between two entities. In the example sentence analyzed in Fig. 3.4 the

predicate is the verb "defines".

- The root of a predicate phrase must be analyzed for relevant domain specific

semantic value in the following stage of the framework. For instance, in Fig. 3.4 this

root is just the verb "define", which strongly suggests that Arg 2, Arg 3 and Arg4 are

features of Arg1.

- Argument phrases with both nsubj labeled tokens and no dobj labeled tokens are

prime candidates for digital circuit master functional blocks, whereas argument

phrases with dobj and nsubj labeled tokens are prime candidates for component

blocks or properties of the master functional blocks. In Fig. 3.4, it becomes clear

that "implementation" (the nsubj token), which is compounded with M3 MBus is a

master functional block.

- A component block can be a functional block if it is possible to apply the rule above

to itself (implying a hierarchy of blocks).

- Compound and amod and nmod labeled tokens of an argument phrase are to be

taken as properties of a functional block or component block. In Fig. 3.4, "Bus

Controller" of Arg 3, "Layer Controller" of Arg3 and "two major components" of Arg2,

are either labeled Compound or nmod and constitute component blocks.

- dep labeled tokens identify a hierarchical link between a functional block and a

property or a component block.

Applying the rules for processing, it is possible to arrive to the triples for said

sentence as stated in Fig. 3.6:

The entity-relation aspect of the triples can be alternatively viewed in Fig. 3.6 (the

entities are in a bubble, while the relation is in bold).

In the context of the end result of this stage, it is important to consider the precision

and recall achieved by the application of the Predicate-argument tool and the internal

rules. For the running case, and following the example set up in the Preliminaries

section, these are presented in Table 3.4.
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As can be seen in the table, the leftmost columns show the amount of information

that is valuable for the understanding of the circuit. These numbers are validated by

the expertise of the designer evaluating the approach.

The values for precision and recall, in the rightmost columns are not as high as

desired, but the influence of these in the overall quality of the output produced by

the framework is lessened greatly as the next stage of the framework comes to the

forefront.

3.3.2.2 The Reasoning Stage

The Reasoning stage is in charge of producing the final output of the ES, that is to

say i) a Power Domain Partitioning scheme and/or ii) Control Signals and Power

Modes. Its inputs are two: the triples and the rules. The former are the output of the

previous process, while the latter are an integral part of the ES, but independent of

previous processes.

The rules are supposed to summarize and bring together the expertise that constitutes

the basis for any power management decision. As is the case with facts, heuristics,

guidelines and procedures, the set of rules should be refined and augmented as need

be. The set of rules used will also vary depending on the output desired, but given

the close link between PM, CS and PD, most of the rules will be used in producing

both output i) or output ii).

Notice that the rules are different from the internal rules of the previous stage, as

the rules are meant to be an input to the ES and concern themselves with how the

triples are supposed to be interpreted in terms of the output of the ES. In summary,

while internal rules concern themselves with the enabling of semantic understanding

within the Information Extraction stage, rules concern themselves with how to unveil

the power architecture intrinsically provided by the specification.

Number

of

extracted facts

Total number

of relevant

domain specific

facts

Recall Precision

Predicate-argument
tool based approach

15 22 0.6 0.3

Tab. 3.4: Scores Validating the Approach
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In simplified and not exhaustive form, the rules can be grouped into 4 types, each of

which is likely to be representing a portion of the heuristic method followed by a

seasoned designer.

1. If any extracted entities are consistently (that is repeatedly) appearing as [entity

1] in the [entity 1] [relationship] [entity 2] triple structure, then they are singled

out as presumed blocks and considered prime candidates for independent power

domains.

2. Entities repeatedly appearing as [entity 2] in several triples are likely to be

subordinate components of entities often appearing as [entity 1]. If these entities

appearing as [entity 2] are components, they should be grouped in the same domain

as those entities appearing as [entity 1], which they relate to.

3. When successful coreference resolution is present and entity 1 is a block, entity 2

probably has a hierarchical relationship with entity 1. Entity 2, even if a block in

itself, is likely to signal an architectural or timing related property of entity 1.

4. If a condition is set for an entity to have some relationship with another, there is

an assumption made about the entities having different activity (timing patterns).

These 4 type of rules are intended to be generic forms to make sense of triples with

regards to their impact on the power management strategy and the general power

architecture of the design described by the triples. In essence, the idea of each of

the type of rules is to "make sense" of the triples.

Type 1 rules follow the heuristic that an entity that repeats itself as preeminent in

several triples (by virtue of its placement as entity 1 in the triple format), points

to an "independent" component of the design. For instance in the set of triples in

Fig. 3.6, MBus implementation is taken to be the top level component of the design,

pointing to a similarly top level Power Domain. This kind of rule bespeaks the

fundamentals of the power structure of the design under analysis.

Type 2 rules follow the heuristic that an entity in a subordinate position within the

triple (as entity 2), is highly likely to also be subordinate to the component defined

by entity 1. Back to the set of triples in Fig. 3.6, this type of rule yields the highly

probably "conclusion" that Bus Controller and Layer Controller are subordinate to

MBus implementation. In this case, the subordination means that the Bus Controller

and Layer Controller belong to MBus implementation and are therefore not the top

level Power Domain.

Type 3 rules follow the heuristic that if there is a way to know all the relationships

that signal how an entity is affected by other (which is essentially what coreference
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Bus Controller wakes Layer Controller.

Fig. 3.6: Another Domain Specific Triple from Part of the Selected Input

resolution enables), these relationships must be primarily analyzed as signaling

possible characteristics of a component. As an example of how this type of rule

operates, please notice how in Fig. 3.6, there is the case that Bus Controller wakes

Layer Controller, implying two blocks with a controlling sequence. Such a useful fact

leads to thinking of at least a control signal being present in the design.

Type 4 rules follow the heuristic that if there is a relationship of conditionality

between entities, there are highly likely to have different activation patterns. Going

back to Fig. 3.6, the application of this type of heuristic leads to considering the high

probability that Bus Controller and Layer Controller should be controlled separately.

This, in turn, strongly suggests one extra Control Signal, the likes of which is related

to the control of at 2 Power Modes (since the conditional OFF property of Layer

Controller supposes a corresponding ON property).

In this stage, the rules are applied within the context of a CLIPS inspired Python

library for the building of Expert Systems called Experta [67]. Essentially, Experta is

the software framework that allows for the Expert System to be built.

An excerpt of the code that implement the first rule can be seen in Fig. 3.7:

In Fig. 3.7 it is possible to see that the main Facts leading to the Main Rules in the

class Triple are (in order of appearance):

• The declaration of the setblock fact as a resulting fact

• The declaration of the fact that once the number of instances of entity1 (a)

is beyond 5, it means that the entity is prime candidate for being taken as a

preliminary PD

• The declaration of the fact that entity1, relation and entity2 can be filled with

the appropriate names

As it is not within the purview of the thesis to further explain the inner workings of

the Experta library, this shall serve only as to familiarize the reader with the type of

programming involved in the ES.

In this stage, it is possible to add another score into consideration as a quality metric

for the response framework as in acts until said stage. This quality metric is the

time taken for the framework to produce valid triples. Whereas said values are
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1 import re

2

3 from experta import *

4

5 //...

6

7 class Triple ( KnowledgeEngine ):

8

9 @DefFacts ()

10 def_ascertain (self):

11 yieldFact ( action =" setblock ")

12

13 @Rule (Fact(a=P( lambda a: a >= 5))

14

15 @Rule (Fact( action =’setblock ’),

16 NOT(Fact( entity1 =L())))

17 def ask_entity1 (self):

18 self. declare (Fact( entity1 = input (" State the entity 1")))

19 a += 1

20

21 @Rule (Fact( action =’setblock ’),

22 NOT(Fact( relation =W())))

23 def ask_relation (self):

24 self. declare (Fact( relation = input (" State the relation type")))

25

26 @Rule (Fact( action =’setblock ’),

27 NOT(Fact( entity2 =L())))

28 def ask_entity2 (self):

29 self. declare (Fact( entity2 = input (" State the entity 2")))

30

31 @Rule (Fact( action =’setblock ’),

32 NOT(Fact( entity2 =())))

33 def ask_entity2 (self):

34 self. declare (Fact( entity2 = input (" State the entity 2")))

35

36 @Rule (Fact( action =’setblock ’),

37 Fact( entity1 = MATCH . entity1 ),

38 Fact( relation = MATCH . relation ),

39 Fact( entity2 )= MATCH . entity2 ),

40 Fact(a= Match .a))

41 def setblock (self , entity1 , relation , entity2 , a):

42 print (" Introduce the triple " % (entity1 , relation , entity2 ))

43 print (" Entity 1 has been instantiated enough times to be

considered candidate for PD")

44

45

46 //...

47 engine . Triple ()

48 engine . reset ()

49 engine .run ()

Fig. 3.7: Excerpt of the Rules
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obviously highly dependent on the length of the sentences parsed, the amount of

sentences parsed (in the previous stage), as well as on the firing of the appropriate

rules programmed into the ES in the current stage, this is a number than rarely

exceeds 2 seconds per sentence.

Given the amount of sentences selected as input and compensating for the need for

more rules whenever the ES needs refinement, it is safe to conclude that the time

spent by the ES is rather negligible when compared to the crafting of the Selected

Input, a non automated procedure.

3.3.2.3 The Outputs

The ES will yield a PD partitioning scheme and a set of CS and PM.

From the sentences from the MBus implementation being taken as the specification

and through the ES (both the Information Extraction and the Reasoning stages), the

response framework yields a likely Power Domain partitioning scheme consisting of

two Power Domains that can be switched on/off (power-gated). These two Power

Domains are the Bus Controller and the Layer Controller. While the existence of

the aforementioned controllers can be easily deduced from the first element in the

list of selected sentences from the reference implementation, this is not enough to

deduce whether or not the components belong in two different power domains. It is

through the reasoning based on the rules that the existence of two Power Domains

is surmised. Additionally, there is an Always ON domain that is to contain functional

blocks.

Also from the selected sentences of the specification being considered, the response

framework yields a set of Control Signals and Power Modes. Once the Information

Extraction stage identifies the entities and their relationships, the Reasoning stage is

where rules designed to set the Control Signals and Power Modes are applied.

The Reasoning stage is based on the ability to analyze the potential profile of

an implementation, a description of which is taken to be the specification under

analysis. Such a profile is a record of the pattern of activation/deactivation (powering

on/powering off) of each functional block for each of the tasks performed by the

implementation. Taking the profile into consideration, the gist of the Reasoning

stage can be summarized by the following two statements:

1. A PM is a unique pattern of active/inactive states for all identified functional

blocks.
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2. A CS is taken as a unique way to switch one or several functional blocks into

active/inactive state for each pattern.

In the case at hand, the number of PM is set to 4, while the number of CS is

determined to be 3. A way to visualize these results is depicted in Table 3.5

Sleep

Controller

Interrupt

Controller

Wire

Controller

Layer

Controller

Bus

Controller

Power Mode 1 1 1 1 0 1
Power Mode 2 1 1 1 1 1
Power Mode 3 1 1 1 0 0
Power Mode 4 0 0 0 0 0

Control Signal 1 Control Signal 2 Control Signal 3

Tab. 3.5: Control Signals and Power Modes for the MBus Device

A short explanation on how the response framework arrives at 3 CS and 4 PM can

be offered through a validating manual analysis, as follows:

There is a a natural (to an experience designer) understanding that the Sleep

Controller, the Interrupt Controller and the Wire Controller belong in the same

Always ON domain, which means that they are controllable through a single Control

Signal. in addition, it is clear that the Bus Controller and the Layer Controller belong

in different Power Domains and that the former can be active or inactive while the

latter is active. Given the fact that the Bus Controller is also capable of being Power

Gated, it is clear that if such a component is inactive, the same would happen to the

Layer Controller, which is dependent on it.

Following the premises outlined above, it is clear that at least 3 CS are needed

for the implementation (one per each Power Domain), as well as 3 Power Modes

(according to the combination of active/inactive states for the Layer Controller and

the Bus Controller). The extra (fourth) PM is shown in Table 3.5 as a Power OFF

Mode corresponding to the non operative status of the Always ON domain, which is

a typical PM for any circuit.

3.3.2.4 Limitations of the Response Framework

Based on the description of the stages of the response framework, it becomes clear

that said framework fulfills its purpose only under certain conditions of operation.

The extent of these limitations does not invalidate the efficacy of the framework, but

does reveal areas in which further work is necessary to improve its effectiveness.

The limitations can be grouped into 3 categories:
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1. Working assumptions: these are limitations that relate to certain structures

for the framework to properly work. For instance, the Selected Input of

the framework needs to be both manually selected (which precludes full

automation) as well as selected for clarity in its sentences. A specification with

extremely verbose sentences is not apt for the framework.

2. Efficacy assumptions: these are limitations related to how the framework is

designed to operate in order to conduct proper analysis. For instance, the

internal rules in the Information Extraction stage need to be comprehensive

enough so as to yield a recall over 0.4 (at the least) so that as many useful

facts are properly turned into triples. Furthermore, this category of limitation

also applies to the rules as input to the Reasoning stage, since these have to

capture the heuristics of the expertise of the designer in order to turn the set

of triples into the Power Domain partitioning scheme and/or the setting of

Power Modes and Control Signals. If either the internal rules in the IE stage

or the rules in the Reasoning stage are insufficient in number or adequacy,

the end result will yield extremely simplified results, which render the output

inefficacious.

3. Output assumptions: these are limitations that relate to how the output is

manifested. For instance, in the running case at hand, the assumption that

a Control Signals imply at least 2 Power Domains enables the determination

of a Power Domain partitioning scheme. In the same vein, for the sake of

simplicity, a Control Signal is considered responsible for only 2 internal power

states (ON/OFF) of Power Domains, leading to a reduced number of Power

Modes. This type of assumptions limit the framework to very basic outputs,

which shun DVFS or other power management techniques, as well as forcing

output i (the PD partitioning scheme) and output ii (the CS and PM) to be

determined at the same time.

The limitations of the response frameworks have several origins, but they essentially

relate to technical limitations of both Expert Systems, as well as Open Information

Extraction tools and frameworks. In addition, there are limitations related to

implementation issues stemming from the original nature of the approach presented

by the framework. Irrespective of the origin, these limitations do not imply that the

framework is not usable, but point to the what it requires to be be usable.
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3.4 Concluding Remarks

Since the need to parse a natural language specification is becoming more ubiquitous,

tools have been developed to aid the designer in this process. While the lack of

ontologies is a roadblock to more efficient and fine tuned Information Extraction

within the ASIC design field, Open Information Extraction (OIE) is still effective in

providing valuable assistance for some specification analysis tasks such as extraction

of verification statements and ASIC property recognition.

The main contribution presented here is an Expert System (ES) based on Universal

Dependencies (UD), a Dependency Grammar scheme that is semantically oriented.

The use of UD within the Expert System makes it possible to elicit useful and

relevant facts from a Selected Input (sentences from a specification) from the triples

yielded via the use of the internal rules governing the Dependency Grammar scheme.

These triples working together with the ES rules are meant to mimic the reasoning

of a designer with regards to extracting valuable knowledge to finally output a

Power Domain partitioning scheme and/or the setting of Control Signals and Power

Modes.
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Application of the response

framework

4

4.1 ASIC Designs from Natural Language

When the specification a designer has as its main design document is in natural

language and the digital circuit being designed is an ASIC, it is very likely that said

specification will be either: i) a technical standard filled with flowcharts, graphs and

other text elements, together with prose, or ii) a reference implementation, filled

with list of variables and configuration options, as well as specialized comparative

graphs that purport to show how the implementation complies with a given standard.

In addition the latter are more likely to contain textual descriptions of the intended

operation flows in prose.

Typically, an ASIC design is under the need to comply with strict regulations involving

physical variables up to the transistor level, or the gate level, as well as area or power

budgets, closely tied to floorplanning, routing and other tasks that are performed at

lower levels of abstraction. A technical standard normally lists numerical ranges for

important variables that the circuit has to manage, sometimes presented in tables,

sometimes presented in graphs. Said data constitute the majority of the content

of a specification that is a technical standard. However, it is also traditional for a

technical standard to have a very succinct explanation of the flows of operation that

the ASIC design has to implement.

As was shown in the previous chapter, the response framework does not need to

have a large text input to be able to select worthy sentences as input to the Expert

System. When the natural language explanation (in prose) of the normal operation

flow of the design is sufficiently "fleshed out" (detailed), the response framework

can provide assistance with setting the Power Domains (PD) (by yielding a Power

Domain partitioning scheme), as well as in setting the Control Signals (CS) and

Power Modes (PM).

As a way to showcase the efficacy and applicability of the response framework with

use cases featuring designs representatives of the ASIC world, two were selected.

They are: a LZW encoder and an industrial grade HDMI Port Processor.
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Encoders are archetypal circuits used in Internet of Things (IoT) devices, They

transform data (encode) from one representation to another and need to be fast

and consume very few resources or else it may become better for the designer to

implement the encoding process in some embedded form in a general purpose

processor. In addition, the typical sequential nature of the encoding processes lends

itself to a set of functional blocks that operate passing each other information with

very distinct timing patterns for the process to be successful.

The encoding processes implemented by encoders can be multiple or singular, but are

well defined and extremely likely to be standardized in either a technical standard

on in a reference implementation of some kind. Textual descriptions of the operation

flow in terms are regularly found in reference implementations or in informal sources

in which the encoding process is described.

In view of the above, a LZW encoder is a natural selection for a use case in which

to test the response framework. The fact that the LZW algorithm is an algorithm

requiring repetitive steps and non-trivial activation profiles further vouches for its

inclusion as a use case.

With regards to the HDMI Port Processor, several salient points merit its selection as

a use case. HDMI being a well known technology in use to interface High Definition

Video and Audio (hence the M, standing for Multimedia), an HDMI port processor

is a typical ASIC solution for the hardware world. HDMI ports are meant to be the

connecting block that allows transmission and retransmission of HDMI compliant

data from sources to processing or displaying devices (such as a Digital TV). HDMI

is a well known and well supported standard, which requires implementations of

port processors to support switching from sources. Said requirements imply that the

Port Processor is bound to require memory blocks and some method of polling, as

well as a control unit, further implying not only several modes of operation, leading

to several PD, but several CS and PM, as well.

Furthermore, as a well known and well supported standard, the actual HDMI

technical standard specification is, unfortunately, not readily accessible, and contains

prose and tables and graphs in excess of 200 pages. While a proper understanding

of the relevant sentences and textual data from this technical standard specification

requires expertise, the specification that shall be considered in this chapter is that of

the HDMI Port Processor itself, which, in turn, contain plain language descriptions

of operation flows, which are sufficient for the response framework to be of use.

In view of the above, the HDMI Port Processor is also a natural selection for a use

case to showcase the efficacy of the proposed response framework, as it combines

4.1 ASIC Designs from Natural Language 57





As can be gleaned from Fig. 4.1, the proposed architecture contemplates the follow-

ing functional blocks:

• Serial Port

• Input RAM

• Main State Machine

• Hash Generation Control Block

• LZW encoder State Machine

• Code Value RAM

• Output Forming Logic

• Output RAM

• Append Character RAM

• Prefix Code RAM

Not all of the listed functional blocks are in the same hierarchical level of "im-

portance". As a mater of fact, from simple inspection it is noticeable that Append

Character RAM and Prefix Code RAM are both part of a potential Dictionary block. In

the same vein, with the exception of Serial Port, Input RAM and Main State Machine,

the remaining functional block can all be grouped under a larger functional block

called LZW Encoder Block.

In view of the above it is possible to foresee that Serial Port Input RAM and Main State

Machine are prime candidates for Power Domain status, as is the "super" functional

block LZW Encoder Block with all of its child blocks.

All of the information taken from Fig. 4.1 is very useful, but unfortunately cannot be

extracted by the framework proposed herein, as the framework only deals with plain

text. However, it is possible to extract very similar conclusions via the use of the

framework. For this to happen, a cursory examination of the same specification from

which the Fig. 4.1 comes from is conducted in order to find descriptive paragraphs.

In order to do make use of the framework the following descriptive paragraph is

chosen as the text source:
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The main state machine controls the data movement and control flow for

all the total design including the serial port and the LZW encoder block. The

input RAM is used to store the data received from the serial port of the PC.

The LZW encoder block implements the LZW algorithm, both the control

and the data path. The code value RAM is the Hash Table implementation,

while the dictionary block implements the LZW dictionary. The output

forming logic breaks and merges the 13-bit data output from the LZW data

path on correct 8-bit boundaries before writing it to the output RAM. The

output RAM is used to store the compressed data which is than transmitted

through the serial port to the host PC to be displayed on the terminal.

The above paragraph contains the Selected Input to the Expert System. These

sentences are:

• The main state machine controls the data movement and control flow for all

the total design including the serial port and the LZW encoder block.

• The input RAM is used to store the data received from the serial port of the

PC.

• The LZW encoder block implements the LZW algorithm, both the control and

the data path.

• The code value RAM is the Hash Table implementation, while the dictionary

block implements the LZW dictionary.

• The output forming logic breaks and merges the 13-bit data output from the

LZW data path on correct 8-bit boundaries before writing it to the output RAM.

Once the Selected Input has been established, the next stage of the ES comes involves

the extraction of domain specific triples from it.

4.2.1 Extracting the Triples

Based on the sentences above and the resulting triples after the Information Extrac-

tion stage of the response framework can be seen in graphical form as a semantic

map in the following figure:

The semantic map can be read in triples in following the formula Main/Secondary

Block-Relationship-Main/Secondary Block. There are 8 such triples. Some of them

are:
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1. Main State Machine-controls-Serial Port.

2. Serial Port-uses(stores in)-Input RAM.

3. Output Block-writes-Serial Port.

The triples are obtained in the same fashion described in the preceding chapter. So as

to showcase how Universal Dependencies (UD) are used in parsing the sentences for

semantically validated concept, the next paragraphs offer a succinct explanation.

Let the sentence "The input RAM is used to store the data received from the serial

port of the PC." be analyzed following the use of UD, with the Predicate-argument

tool. Doing this would yield the result shown in simplified form in Fig. 4.3. The

form clearly identifies the phrase "is used to store" as a predicate (and therefore a

potential relationship), while having "the input RAM" and "the data received from

the serial port of the PC" as arguments (that is to say, potential entities). Is it

therefore possible to apply the internal rules after the Predicate-argument tool has

done its job (as presented in the previous chapter) to achieve the aforementioned

number of 8 triples.

As has been explained before, the quality of the triples as units of information to

be reasoned in the next stage of the framework can be measured by the precision

and recall scores. These values are expressed in Table 4.1. Once again, while

these numbers are not as high as desired, their impact in the overall purpose of the

framework is diminished by the use of intelligent rules for reasoning.

The input RAM is used to store the data received from the serial port of the

PC.

Fig. 4.2: LZW Encoder Semantic Map
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The input RAM is used to store

root

compound

xcomp

ARG1
PRED

the data received from the serial port of the PC.
dobj

acl

case

compound

ARG3

Fig. 4.3: Simplified Predicate-Argument Output for Part of the LZW Encoder Specification

Number

of

extracted facts

Total number

of relevant

domain specific

fact

Recall Precision

Predicate-argument
tool based approach

15 12 0.66 0.53

Tab. 4.1: Precision and Recall within the LZW Encoder Use Case

4.2.2 Rules and Reasoning

Fig. 4.2 contains distinctions between the type of functional blocks and the type of

data flow (execution or information) between said functional blocks. This simplifi-

cation is not within the purview of the Expert System implementing the response

framework, but is only done in order to better illustrate the conceptual architecture

for the setting of a Power Domain partitioning scheme.

Once the triples have been obtained, the triples have to be fed into the Reasoning

stage along with the rules. As it is evident from Fig. 4.2, the subtask has to establish

hierarchical links between the functional blocks (the semantic entities) so as to

yield a Power Domain partitioning scheme. In order to do this, the Reasoning stage

employs rules. Some rules can be shortly stated as follows:

R1: Blocks that are linked to at least 2 other blocks are considered candidates for

their own Power Domains as they are likely to control others and, therefore,

have a longer active time.

R2: Any two blocks not directly linked to each other through the execution flow

belong to different domains.
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R3: Blocks relating to each other through hierarchical dependencies are grouped

together in a single power domain.

Rules R1 and R2 are Type 1 and Type 2 rules, respectively (following the classi-

fication expressed in the previous chapter). Let it be recalled that Type 1 rules

and Type 2 rules are about unveiling hierarchy between potential blocks of the

design (Main/Secondary Blocks), as well as understanding which blocks are prime

candidates for Power Domains. Rule 3 is a Type 3 rule, because it concerns itself

with strongly suggesting that the hierarchical structure unveiled by Rule 1 and 2

leads to Secondary blocks signaling an architectural property of Main blocks.

After the application of the rules, the framework can output a PD partitioning

scheme and values for Power Modes and and Control Signals. This is explained in

the following subsection.

4.2.3 Power Domain Partitioning Scheme and Power Modes

After the application of rules of the previous step, the response framework yields a

Power Domain partitioning scheme that consists of 4 PD: Main State Machine, Serial

Port, Input RAM and LZW Encoder Block

Also after the application of a set of rules modeled after the previously mentioned

fashion, the Expert System yields 4 CS, one per each PD, as well as 8 PM (considering

an ON/OFF state for each PD other than the one of the Always ON PD).

This Power Domain Partitioning scheme and set of Power Modes is explained in

more human oriented terms both by the LZW Encoder semantic map in Fig. 4.2 and

by the following reasoning process:

"The Main State Machine controls the Serial Port and the Encoder Block. The Serial

Port writes/stores in the Input RAM and interacts with the Encoder Block, following

the Execution flow". As reflected in Fig. 4.2, the aforementioned elements of the

design are Main Blocks and each of them is considered a distinct Power Domain.

The independent control of the Power Domains is based on the fact that 3 of the

Blocks (Serial Port, Input RAM and Encoder Block) interact (communicate) with each

other throughout the Secondary Blocks (Hash Table Implementation, Output Block

and Dictionary Block) at presumably different times following the Information flow.

The Main State Machine block controls both Serial Port and Encoder Block directly

(and Input RAM indirectly), further cementing that there is a need for each Power

Domain to have its own Control Signal.
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With regards to the Power Modes, the reasoning process takes the conclusion

of the setting of 4 CS (one per each PD) would at the very least 16 PM, given

that each Power Domain may be ON/OFF (16 comes from a 24̂ for a two state

variable independently sorted in 4 different combinatorial elements). However, from

inspection of the LZW Encoder semantic map, it becomes clear that the Main State

Machine is in an Always ON PD. This halves the potential PM number to 8.

4.2.4 Validation of the Power Domain Partitioning Scheme and

Power Modes

So as to assess how valid the suggested power partitioning scheme really is, the

testbench of the LZW Encoder is run in order to simulate the circuit in SystemC.

During the run, timestamps for the activation patterns of the different blocks and

subblocks are logged for further inspection. This allows for the determination of

when the Serial Port is active, when the Input RAM is being fed, when there is a

change of states within the Main State Machine and when the LZW Encoder Block is

being used.

Thanks to the log data and the control signals that drive the active/inactive state

of a block, it is possible to construct a basic Power State Table (PST) for each of the

power domains. In this scenario, the PST stores the times for which a power domain

is ON or OFF, active or inactive, according to the value of the control signals. In the

case of the Main State Machine, the PST consists of a single "always on" state, as this

block controls the execution flow of the entire system.

So as to validate the impact of the Power Domain partitioning scheme, PKTool, a

power estimation tool for SystemC [72] is used together with the PST. In order to

simplify the validation mechanism and without delving into how precise the power

estimation is, a very simple model from PKTool is chosen. The fixed_power model

from PKTool, which calculates the energy following the equation E = PT , where E

is the energy, P is a fixed power value (provided by the us) and T is the simulation

time for each state (calculated by PKTool through the PST). A value of 0.005 mW is

adopted as a static power consumption value for an inactive module, while 1 mW

is adopted for the fixed power consumption of an active module. These values are

mere approximations based on previous knowledge and are only meant to illustrate

the differences in power consumption of a Power Domain when active and when

inactive.
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Tab. 4.2: Comparison Between Suggested PD Partitioning Scheme and Single Domain
Scheme for the LZW Encoder

Energy consumption [nJ]

Partitioning scheme Main State Machine Serial Port Input RAM Encoder Block Total

Single domain scheme 389.2360 389.2360 389.2360 389.2360 1556.9440
Four domain scheme 389.2360 388.0310 21.7799 26.5861 825.7577

So as to show that the scheme determined by our approach is a solid decision, let

there be a comparison between the suggested Power Domain partitioning scheme

(the Four Domain scheme) and a Single domain scheme. Further description of

these schemes is as follows:

• Single domain scheme: it consists of only one power domain that includes all

four of the main blocks and is on an active state throughout the entire time.

Essentially, this is equivalent to performing no power domain partitioning.

• Four domain scheme: it consists of four power domains (one for each of the

main blocks). This is the partitioning determined by the response framework.

By using PKTool as advertised, the results regarding energy consumption during

the simulation run for both schemes is presented in Table 4.2. The rows in the

table represent the schemes under comparison while the columns show the energy

consumption for each of the modules and also the total energy consumption. As

the single domain scheme simply neglects the activity profile of the modules, the

total energy consumption for it is considerably higher than that of the four domain

scheme in the second row (15556.9440 nJ vs 825.7577 nJ, respectively). The first

row shows that the consumption of each module for the single domain scheme is

the same, implying that all the modules belong in the same power domain (which

follows the activity profile of the Main State Machine module). The second row

shows that the four domain scheme considers the activity profile of the modules.

Both the Encoder Block and the Input RAM block have activity profiles which show

that they are inactive for longer periods of time, thereby consuming less energy than

the Main State Machine.

It is then evident that the suggested 4 Power Domain partitioning scheme signifi-

cantly reduces the power consumption, which means that the response framework

has output a validated scheme.
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4.3 The HDMI Port Processor

An HDMI Port Processor is usually considered a circuit very likely to be designed

and manufactured as an ASIC. As HDMI itself is an interface (with its own protocols

spanning from the physical layer to the link layer of the OSI model) there exists

a great number of industrial grade implementations. Regardless of the myriad of

implementations with different levels of support for the Physical and Link Layers, the

salient point of any HDMI compliant device of this kind is its support for managing

at least 4 HDMI sources for transmission and retransmission.

Without entering into a degree of detail that this document need not espouse, a HDMI

Port Processor needs to be complaint with the HDMI standard [73]. The standard

is a moderately lengthy document filled with tables and graphs and contains very

little plain text from which to extract the required Selected Input for the response

framework. However, by looking into the datasheet (a specification) of an actual

implementation, the issue can be rapidly addressed.

The datasheet of an industrial grade implementation by Silicon Image [74] is

therefore chosen as the specification from which to extract text information. The

following (non exhaustive) list of sentences (or phrases) have been extracted from

the aforementioned specification and serve as part of the Selected Input:

• The four HDMI/DVI receiver ports are defined as Port 0, Port 1, Port 2, and

Port 3.

• Each of the ports is terminated separately and equalized under the control of

the receiver digital block and is controlled by the local I2C bus.

• The transmitter block sends an HDMI content stream based on the content

delivered from the selected source.

• The port processor has 256 bytes of NVRAM for storing common EDID data

that can be used by each of the ports.

• An additional 64-byte block of NVRAM is used by the Auto-Boot feature, which

initializes some of the registers used to enable the EDID for the respective port.

• The EDID block consists of 1280 bytes of SRAM.

• Each port has a block of 256 bytes of SRAM for EDID data,

• Both the NVRAM EDID data and NVRAM Auto-Boot data should be initialized

by software using the local I2C bus.
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While these selected sentences may look disjointed and verbose, it is still possible

to infer a partial picture of the architecture of the HDMI Port Processor by parsing

them appropriately. However, so as to guide the reader and a clearer understanding

of the architecture that the sentences seemingly describe, please see Fig. 4.4 directly

taken from the specification itself:

 

Figure 4. Functional Block Diagram 

Fig. 4.4: The Basic Architecture of the HDMI Port Processor from [74]

Fig. 4.4 shows how the main blocks are connected and explicitly states 2 Power

Domains (An Always On Power Domain and a Power Down Power Domain) for the

design. Achieving a similar conclusion via the use of the response framework is the

challenge at hand. To face the challenge, the response framework is fed the Selected

Input. The next step is to extract the triples.

4.3.1 Extracting the Triples

Once again, thanks to the use of Universal Dependencies it is possible to parse the

sentences and produce a set of useful triples containing information describing the

structure of the design.
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In order to briefly show how the UD based Predicate-argument tool that is the base

of this stage works upon the selected sentences, let the following sentence be taken

as an example:

The four HDMI/DVI receiver ports are defined as Port 0, Port 1, Port 2, and

Port 3.

The four HDMI/DVI receiver ports are defined as

root
nmod

compound

auxverb

ARG1
PRED

Port 0 , Port 1 , Port 2 and Port 3.

compound compound compound compound

ARG3

Fig. 4.5: Simplified Predicate-Argument Output for Part of the HDMI Port Processor
Specification

By looking at Fig. 4.5 it is possible to notice its resemblance to previous such outputs.

Owing to this, belaboring the fact that the internal rules of the Predicate-Argument

tool work to produce the first candidate triples from the relevant facts is unnecessary.

However, it is important to notice that the structure of the example sentence is rather

simple, as is that of the other sentences constituting the Selected Input. While this

makes validated triples easier to build, how useful these can be is still affected by the

depth of the semantically oriented information that can be extracted from them.

By applying the technique detailed in the previous chapter, it is possible to arrive to

a number of 12 valid triples that encapsulate the useful facts. These include, but are

not limited to the following:

• The ports-are controlled by-the bus

• The Transmitter block-transmits-from the ports

• NVRAM-is used by-the ports

• The ports-use-the EDID

• NVRAM-is used by-AutoBoot Feature
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Number

of

extracted facts

Total number

of relevant

domain specific

fact

Recall Precision

Predicate-argument
tool based approach

30 22 0.54 0.4

Tab. 4.3: Precision and Recall within the HDMI Port Processor Use Case

As this stage concludes, it is important to know how did the stage far with regards

to recall and precision. The stage outputs 22 relevant facts and 30 facts total. The

numbers are condensed in Table 4.3.

The values of 0.54 and 0.4 for recall and precision are within the "expected" range.

Most notably it is worth mentioning that the simple grammatical structure of the

selected input sentences and phrases compensates the extra elements of information

that they also contain. The writing style of the specification thus plays a significant

role in how clear the Information Extraction stages can become.

The listed valid triples seem as disjointed as the non exhaustive list of selected

sentences (or phrases), which leads to a reduced knowledge of the structure of the

design, thereby requiring more refined rules to produce a PD partitioning scheme.

Some of these rules are presented in the following subsection.

4.3.2 Rules and Reasoning

As each of the valid triples may not contain deep semantically relevant knowledge in

the form of useful facts, the rules of the Expert System need to be more exhaustive

and detailed than in the previous use case. This need implies rules that are ad-hoc

for use cases like that of a datasheet, which is a very particular type of specification

typically less textually verbose than other types of specifications.

Among the rules that are used in this particular case, there is a higher number

corresponding to type 2 and 4 of the list of general rules. So as to refresh the

reader’s memory, the description of type 2 and 4 of the general rules is given

below.

2. Entities repeatedly appearing as [entity 2] in several triples are likely to be subordi-

nate components of entities often appearing as [entity 1]. If these entities appearing as

[entity 2] are components, they should be grouped in the same domain as those entities

appearing as [entity 1], which they relate to.
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4. When successful coreference resolution is present and entity 1 is a block, entity 2

probably has a hierarchical relationship with entity 1. Entity 2, even if a block in itself,

is likely to signal an architectural or timing related property of entity 1.

Exemplifying both the ad-hoc nature of the rules and the belonging to type 2 or 4

are the following:

• If an entity controls a "bus" type entity, it is prime candidate for inclusion in an

Always ON Power Domain

• If an entity is used by another entity which has an initialization feature (ar-

chitectural property), the latter entity is prime candidate for an Always ON

Power Domain.

• If an entity has a name including the word or parts of the word "control", it is

prime candidate for inclusion in a Power Domain with other similar entities.

• The existence of a initialization feature presupposes at least 2 distinct Power

Modes connected to the entity which possesses the feature.

• A "bus" type entity presupposes at least one control signal for each Power

Domain.

The above rules are laid out in the most generalizable terms possible, yet are

distinctively part of the need for refinement on the part of the designer being aided

by the response framework. The latter 2 rules of the list, in particular, are heuristics

based and lead to a better understanding of the relationship between a Power

Domain partitioning scheme and the setting of Power Modes and Control Signals.

After the application of the rules, the framework can output a PD partitioning

scheme and values for Power Modes and and Control Signals. This is explained in

the following subsection.

4.3.3 Power Domain Partitioning Scheme and Power Modes

The response framework for this use case outputs a 2 PD partitioning scheme:

1. An Always ON Power Domain with the NVRAM and a bus.

2. A second Power Domain with the Ports and the Transmitter block.

Regarding the setting of Control Signals and Power Modes, the response framework

yields a result of:
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1. 4 PM (1 FULL ON Mode, 1 ALWAYS-ON only Mode, also know as STANDBY

Mode, 1 OFF Mode).

2. At least 2 CS (one per each Power Domain).

The values presented above are not atypical for a specialized ASIC such as a HDMI

Port Processor. They are, unfortunately, rather basic and simple, in spite of the effort

incurred on by increasing the ad-hoc rules. It must be said, however, that basic and

simple may mean incomplete, but not wrong.

To validate the output (and hence the suitability) of the response framework a

comparison to an already valid PD partitioning scheme and set of PM and CS is

required. A way to do this is to compare to already validated settings provided by

the specification on how it handles the PD, PM and CS.

4.3.4 Validation of the Power Domain Partitioning Scheme and

Power Modes

As the case under analysis corresponds to a finished industrial grade product, it is not

possible to simulate the design or to evaluate other alternatives since the architecture

is fixed. This issue is countered by the fact that, as was previously mentioned, Fig. 4.4

contains sufficient information about the Power Domain partitioning scheme.

By inspecting Fig. 4.4 more clearly, it is possible to conclude that the Power Domain

partitioning scheme output by the response framework is valid, albeit incomplete.

NVRAM (NVRAM) is indeed a block situated within the Always ON Power Domain,

as is a bus (Local I²C), but there is a very important module that was not considered

by the output: the CEC Controller. This omission is the byproduct of the "indirect"

wording style of the sentences and phrases related to this entity and their lack of

links to it from other blocks. Further inspection reveals that the Ports (Port 0, Port 1,

Port 2, Port 3) and the Transmitter Block (TMDS named blocks) are indeed in the

second Power Domain, named Power-Down Power Domain. A further figure (Fig. 4.7)

extracted from the some specification (datasheet) confirms those findings, even

adding extra information about voltage sources that have never been relevant data

for the response framework to tend to.

As it pertains to the setting of Power Modes and Control Signals, the datasheet

provides detailed information, as is required of a document of that nature. The

information is neatly summarized by a table figure extracted from said document

that is available as Fig. 4.6.
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Table 2. Description of Power Modes 

Power mode Description SBVCC33

Power-On 

mode 3.3 V 

Standby 

All power supplies to the SiI9187B chip are on. All functions 

are available. The standby power supply is 3.3 V. 

MICOM_VCC33 cannot be used in this mode. The TMDS 

transmitter must be connected to a terminated receiver. 

Power-On 

mode 5 V 

Standby 

All power supplies to the SiI9187B chip are on. All functions 

are available. The standby power supply is 5 V. The TMDS 

transmitter must be connected to a terminated receiver. 

connection

Standby 

power mode. 

3.3 V 

Standby 

The always-on power domain is on, supplied from the 

internal power MUX; all other supplies are off. The standby 

power supply is 3.3 V. MICOM_VCC33 cannot be used in 

this mode.  In this mode, EDID and CEC are functional, but 

video and audio processing is not performed and all outputs 

are off. 

Standby 

power mode. 

5 V Standby 

The always-on power domain is on, supplied from the 

internal power MUX; all other supplies are off. The standby 

power supply is 5 V. In this mode, EDID and CEC are 

functional, but video and audio processing is not performed 

and all outputs are off. 

connection

HDMI Port 

Power only 

3.3 V 

Standby 

Power is off to the device. HDMI +5 V from the HDMI 

cable is the only power source. For example, if the TV is 

unplugged from AC wall outlet, EDID and CEC are 

functional in this mode. 

HDMI Port 

Power only  

5 V Standby 

Power is off to the device. HDMI +5 V from the HDMI 

cable is the only power source. For example, if the TV is 

unplugged from AC wall outlet, EDID and CEC are 

functional in this mode. 

connection

VGA Port 

Power only 

3.3 V 

Standby 

Power is off to the device. VGA +5 V from the VGA cable is 

the only power source. For example, if the TV is unplugged 

from AC wall outlet, EDID is functional in this mode. 

Fig. 4.6: Power Modes of the HDMI Port Processor from [74]

The table shows that the design is characterized by 7 Power Modes (2 of which

are Power ON Modes, while 5 are STANDBY modes). While it may be tempting to

outright dismiss the Power Modes setting output by the response framework, as

being wrong, a closer inspection reveals that the Power ON Modes differ in matter

of which is their voltage source, with the same happening in similar forms to the

remaining STANDBY modes. In light of this "revelation", it may be permissible to

conclude there are indeed 2 main Power Modes: a Power ON Mode and a STANDBY

Mode. An OFF Mode is not considered by the datasheet, but some of the Power

Modes alluded to in the last rows on the table figure are similar in spirit to that OFF

Mode.

Finally, as it comes to Control Signals, it is clear from the previous figures from the

datasheet that there is a need for at least a Control Signal for each Power Domain,

as per the output of the response framework. The fact that the datasheet includes

voltage source information leads to more required Control Signals, as it becomes

clear that each voltage source will lead to an extra Control Signal being required.
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Figure 7. Standby Power Supply Diagram 
Fig. 4.7: Simplified Power Architecture of the HDMI Port Processor from [74]

Based on the rationale above it is reasonable to state that the output by the re-

sponse framework has been validated by the comparison to the decisions already

implemented for an industrial grade finished design.

4.4 Concluding Remarks

In this chapter, two use cases (LZW Encoder and HDMI Port Processor) were selected

to demonstrate the efficacy of the response framework presented in the previous

chapter. Guiding the reader through the stages of the framework it is possible to

conclude that the response framework outputs valid Power Domain partitioning

schemes, as well as similarly valid settings for Power Modes and Control Signals,

in a short time, which is undoubtedly a very useful feature for early Design Space

Exploration.

Through the use cases, it has also become apparent that the rules that govern the

most important stage of the Expert System (which is at the core of the response

framework), need to be refined for every situation. This step is still a manual task,

but it greatly aided by the accessible and easy way in which the rules can be devised.

It is important to note that, while the Information Extraction stages of the ES have

recall and precision scores below 0.7 and 0.5 respectively, these are not as relevant

to the end output of the framework as the pertinacity and wide scope desired of

the ad-hoc rules. Some other difficulties encountered relate to the wording of

4.4 Concluding Remarks 73



the Selected Input (sentences and phrases), are lessened by the use of Universal

Dependencies (UD), although this is an area in which Predicate-argument tools are

still in their infancy.



Part II: Technical Language

Specifications

75



Technical Language:

Preliminaries, Relevant Work

and Response Framework

5

5.1 Preliminaries

In the realm of IC development, especially so for ASIC, rapid prototyping is crucial in

the context of regular Design Space Exploration (DSE). The reason behind the crucial

nature of rapid prototyping is not only because of the need to accelerate the early

stages in development as per the regular hurry to get the product ready as soon as

possible, but also because it is hardly possible to test and verify compliance for an

intended implementation when the implementation is nothing but a text document

in natural language or in a block diagram.

Due to the ever-increasing optimization required of the modern ASIC, non-functional

design aspects such as power consumption are now gearing rapid prototyping

towards the use of power-aware DSE tools [75]. Additionally, it is important to

mention how the top-down approach to designing ASIC has been gaining traction,

as it becomes more and more difficult to design an ASIC likely to be used in a

bigger System on Chip (SoC) without consideration to how it shall fit in the overall

architecture of said SoC. Hence, the move is towards the Electronic System Level

(ESL), a system level in which the main point is the use of technical languages such

as SystemC, which make the necessary abstractions possible [76].

Traditionally up until the early 2000s, the level at which power-aware techniques

were applied was the Register Transfer Level (RTL). As has been discussed previously

in an earlier chapter of this document, the RTL is close enough to the physical imple-

mentation of an IC that it is possible not only to measure or estimate design variables

that impact on power, but also to use many of the widely available optimization

tools and algorithms. Unfortunately, it is not possible to simulate or estimate the ar-

chitectural impact of power-aware decision and it additionally very time consuming

to simulate certain scenarios common to DSE (as evaluating different architectures).

76



Furthermore, the opportunities to decrease power consumption at the RTL are more

limited than those at a system level [77], such as the ESL.

At the ESL, the IC is developed as a SystemC-based Virtual Prototype (VP). A VP can

be described summarily as a model of the design that can be simulated and "run" (in

software fashion). The VP is an example of what modern rapid prototyping means.

With a VP, an initial design can be tested as if it were ready for deployment, through

the simulation kernel provided by SystemC, a C++ based framework that mimics

the intrinsic non sequential and concurrent nature of an IC.

For the VP to meet a power budget, it has been shown that the setting of the

architecture of the VP has to be done as early as possible in the initial design phases

[78]. These early phase decisions that constitute the nucleus of proper power-

aware DSE are, however, limited by the nature of the ESL technical language. The

limitations comes in the form of the traditional workflow at the ESL being almost

exclusively about the functionality of a design, tuned in and geared towards making

it possible for the designer to rapidly implement and test said functionality. As such,

there is no room at the traditional ESL workflow for power concerns.

It is not yet possible to take any VP in SystemC and, through a process of De-

sign understanding (DU), be able to understand the impact of the already existing

functionality based architecture of the VP has on the power related issues (power

consumption, area overhead, complexity of a suitable Power Management Unit,

etc.). It is nonetheless possible to compare and estimate the impact of existing

functionally validate VP when the associated Power Management Strategy (PMS)

has been decided beforehand [79] [79]. The latter is possible due to the "profiling

ready" semantics of the SystemC framework.

Regrettably, due to the non univocal semantics of SystemC full power-aware un-

derstanding of the VP written in it is inhibited. Notwithstanding that limitation,

a SystemC specification can still be parsed not only for functionality, but also for

information about how it consumes power (something that is akin to a power pro-

file). The intrinsic power profile is nothing but the way power is consumed through

the operation flows of the design, as per its activity profile. In this activity profile,

different functional blocks are active or inactive at various stages of execution and

they connect to each other in a variety of forms, leading to a distinct imprint on the

power concerns and to the need for a specific PMS.

In order to aid the understanding of the difficulties in parsing a SystemC description

for power related information, please consider a portion of the SystemC specification

for the Pipe example of the SystemC Accellera suite [44] like the one in Fig. 5.1:
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Algorithm 1 Algorithm for PM and CS Extraction

1: procedure PM EXTRACTION
2: ⊲ l(F)=List of functions
3: ⊲ l(P)=List of Timestamp Patterns
4: ⊲ l(UP-PM)=List of Unique Patterns-PM
5: for all T do: ⊲ For all timestamps
6: l(P )T ← l(F ) == 1 ⊲ Create a pattern for each timestamp out of the active

functions
7: end for
8: if (P )T is unique then
9: l(UP − PM)← l(P )T ⊲ Only add unique timestamp patterns to the list of

Unique Patterns-PM
10: end if
11: PM ← int(l(UP − PM)) ⊲ Take the integer count for the list
12: end procedure
13: procedure CS EXTRACTION
14: ⊲ l(A)=List of active timestamps
15: ⊲ l(F)=List of functions
16: ⊲ l(UP-CS)=List of Unique Patterns-CS
17: for all F do: ⊲ For all functions
18: l(A)f ← l(F )==1 Create a list of patterns for which each function is active
19: end for
20: if l(A)f is unique then
21: l(UP − CS)← l(A)f ⊲ Only add unique patterns to the list of Unique

Patterns-CS
22: end if
23: CS ← int(l(UP − CS)) ⊲ Take the integer count for the list
24: end procedure

following manner for all module instances. "The power function of module stage3

with instance number 0x7fffd62 is only activated at the period of [1000, 2000] and

[3000, 4000] during the execution".

The information conveyed by the reading of the alternative form on the activity

profile leads to a series of rules of thumb for a graphical approximation to the setting

of Power Domains, Control Signals and Power Modes. In essence, these rules can be

summarized in reverse fashion as:

• The PM can be obtained through identifying the unique time based patterns in

the activity profile.

• The CS can be obtained through identifying the number of coinciding. modules

per identified PM.

• The PD can be obtained by assuming at least one PD per CS.

Looking back at Fig. 5.4:

For the PM: Modules stage1, stage2 and numgen share the same active/inactive

periods. leading to them being in PM1, while Stage3 has different activity periods,

starting from simulation time 1000, leading to a second PM: PM2.
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their corresponding member functions and methods. This structural information is

used by the DU tool, through the GDB script to to trace its functions’ activities at

run-time.

The tracing mechanism is based on the setting of breakpoints at the beginning of

each module’s function in the GDB script file. Once a function of a module is fired

the breakpoint stops the execution and the state of execution (information about the

parent module of the faction and its instance) is logged in the Run- time Log file.

Resuming execution and as the next breakpoints are hit, the Run-time Log file is

generated, and the VP is translated into a structured model of the VP, with the

activity profile being the way the activities of the modules’ functions are presented

with regards to the simulation time. This can be seen in succinct form in Fig. 5.6.

SystemC
VP

fi

Debug
Symbols

GDB
GDB
Script

Run-time
Log

Fig. 5.6: The Design Understanding Approach

DU tools (such as the one highlighted here) used in the context of DSE are repre-

sented in several relevant works which are mentioned in the following section.

5.2 Relevant Work

From the beginning of the 21st century, there have been constant advances in

ESL power modeling and estimation to provide designers with ways to evaluate

alternative VP, such as the work of Mbarek et al. [81] [82]. Other works following

the idea to introduce power-awareness at the ESL have lead to power estimation

tools such as Powersim [72] [83].

Furthermore, for the verification side of the Power Management Strategy, Hazra et

al. have contributed extensively [84]. Similar acknowledgments go towards the
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work of Affes et al., which has concentrated on a systematic approach to very high

level SoC behavior for the modeling of an appropriate Power Management Strategy

(PMS) [85] [86].

It can be stated that for the setting of the parameters of a Power Management

Unit (PMU) (PD, CS and PM), the main relevant works can be sorted into two

categories: High Level Synthesis (HLS) and Design Space Exploration (DSE) oriented

approaches.

HLS approaches are based on the premise of being able to offer the designer a way to

synthesize (physically implement) the PMS from the ESL [87, 88, 89] . Usually this

is enabled by the extension of the SystemC constructs to incorporate power concepts

described in Unified Power Format (UPF) descriptions. DU is not the goal of these

approaches, which are traditionally dependent on manual and large programming

efforts.

DSE approaches are characterized by allowing for the evaluation of different versions

of VP and other abstract designs (even UML based designs) to be able to generate

PMUs. The focus lies on the synthesizable nature of the PMU and how it can be

optimized, once the modeling has been done manually, like is the case of the above

cited works by Affes et al..

Other relevant works more related to using DU tools and approaches using the

concept of PD, CS and PM are those of: Wang et al. [37], who evaluate alternative

PD partitioning schemes for PMU designs that were obtained through an Evolutionary

Algorithm being applied to the analysis of a SoC; and Macko [90], which introduced

automated analysis of the activity profile of a VP. These two works are, unfortunately,

resting on non automated and intrusive ways of dealing with the system-level

specification design themselves so as to provide a way to properly manage the PD,

CS and PM values.

The response framework proposed in this work pursues similar ideas to those

behind the work of Wang et al. and Macko, following the approach of extracting

information and analyzing the activity profile of a VP in order to set the PD, CS

and PM. Unlike those two works, however, the research contribution presented by

the response framework focuses on the algorithm for the system-level automated non-

intrusive extraction of PM and CS (and PD) from the activity profile, which leads to

understanding the Power Management Strategy.
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Structural changes are much less frequent than their behavioral counterparts, since

they are not only costly in terms of design time, but also fundamentally alter the

architecture of a VP. That is why, for most intents and purposes, once an architecture

has been selected for the VP a design decision, this architecture is very likely to

remain constant.

Behavioral changes are the type of changes that routinely emanate from the software

than can run on a given module of the VP (such as a processor). This type of

changes are expected, because software updates need to be accommodated even up

to the point of reaching the synthesizing stages. Consequently, it becomes important

to address these changes or updates during the design process or even after the

synthesize process, from the perspective of the ESL VP prototype.

As an example of changing/modifying the software part, consider the scenario

that the SW1 running on the MPU1 is modified to SW2 to increase the overall

performance of the VP. While SW1 and SW2 may not be substantially different, any

software change affects the behavior of the MPU1. This change becomes evident as

the number of generated transactions, time of activation and access to the memories

are not the same for SW1 and SW2. It is because of the alterations made to the

behavioral patterns of the VP that there exists a noticeable impact on the most

appropriate Power Management Strategy (PMS) to be implemented by the PMU of

the VP.

The changes differentiating SW1 and SW2 can be seen in summarized form in

Fig. 5.9. In it, the black bar (SW2) in Fig. 5.9 shows the activity percentage of the

VP modules based on the new behavioral pattern of the VP, while the other bar

shows the equivalent activity percentage for SW1 the running software of the MPU1

module. Since the bar pattern is different, the parameters related to the realization

of the PMS differ from SW1 to SW2 and this reality means that there will be a need

for an update on them.

Let the MPU1 module be considered as the object under analysis. As a TLM based

module from the VP, there is a need to trace all transactions related to it, as well as

other functions (e.g.thread_process) in which a transaction object is referenced. As

previously stated, this is done through extracting the VP’s AST using the Analyzer

module of Fig. 5.7. Essentially, the introduction of a retrieving statement into the

source code is required. So as to show how this in a clearer manner, please look at

Fig. 5.10.

In line 5 of Fig. 5.10, the transaction object trans is used as a function argument

of the b_transport interface. To trace the transaction and consequently the activity
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of MPU1, the retrieving statement Fout, which is present in line 6, is automatically

generated and inserted after the function call in the instrumented source code.

The main purpose of the instrumented source code is to populate the Run-time

Log via the Executable Binary in order to provide the information required for the

extraction of the Behavioral Patterns. It is those behaviors that condense most of the

changes or updates to the patterns related to the PMS. In Fig. 5.11, it is possible to

see some of the transactions that characterize the Behavioral Patterns as sequences

(SQ).

From inspecting SQ1 from Fig. 5.11 it is possible to say that module MPU1 does

have a sequence that writes data in module Memory1 through the LT_BUS module.

The sequence shows the delay and simulation time for each phase of transaction that

underlines the sequence, as well as the complete the transaction which is 20 ns. For a

graphical depiction of the same information which can aid in further understanding,

please look at Fig. 5.12.

The way in which both the Behavioral Patterns (from the Instrumented Source Code)

and the Structural Patterns (from the AST) are analyzed in the context of a Power-

aware Analysis constitutes the main part of the second phase of the framework,

which is explained in the next subsection.

5.3.2 The Second Phase: Power-aware Analysis

The second phase of the response frameworks uses a Pattern Analyzer based on the

algorithms described in the first section of this chapter to yield a set of PMU param-

eters (PM and CS). This phase basically implements the same type of algorithms

described in Algorithm 1, only adapted to trace the transactions that have timing

information that can be used instead of the timestamps of the original algorithm.

In this phase, both Behavioral Patterns and Structural Patterns are the information

1 struct MPU1: sc_module {

2 tlm_utils :: simple_target_socket <MPU1 ,32> socket ;

3 void thread_process (){

4 ...

5 socket -> b_transport (* trans , delay);

6 Fout <<‘‘ MPU1: thread_process :ID = ’’<<trans <<‘‘ Cmd = "<< trans ->

get_command () <<‘‘ address = ’’ << hex << trans -> get_address

() <<‘‘ at time ’’ << sc_time_stamp () <<‘‘ delay = ’’ << delay

<< endl;

7 ...}

Fig. 5.10: Part of the Instrumented Source Code of the VP
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PMU that the framework can output needs to have a degree of programmability, not

unlike that of a regular module of the VP.

As a result of the demand for the generated PMU (stemming mainly from forced

changes in the PM and CS), the analysis in these phase needs to consider the Power

Management Strategy to be "run" in an internal read-only memory. The rationale is

as follows: the PMU must be able to read from the memory all the setting of PM and

CS that can be derived from the changes within the VP (for simplicity, these changes

will be considered only as software changes for the Main Processing Unit). That is

to say, the Power-aware Analysis phase has to provide the PMU with information

encoded a read-only memory for each new iteration of the changing software run in

the modules.

The information within the read only memory is meant to identify the modules for

whom the PMU has to issue an activation/deactivation CS and the time unit for

that CS (the duration of the ON/OFF state of the issued activation/deactivation).

The read only memory is then the receptacle of the PMS and its encoded properties

are dependent on the number of time-units (extracted by analyzing the Behavioral

Pattern) and the number of bits to code the sequences defining the Behavioral

Patterns in each time unit (a construct called "pattern data"), among other values.

The pattern data construct consists of two main parts which are 1) the amount of

bits that will encode the maximum difference between two time-units and, 2) the

amount of bits required to code each module of the design with an unique ID. By

storing the pattern data and the Control Signals to drive the modules in the read-only

memory at the beginning of each iteration in the design of the VP, the PMS can be

updated according to the changes reflected in every iteration.

While the generation of a basic PMU (a System/TLM module to implement as an

added module of the VP) is not the main goal of this second phase, it is nonetheless

revealing to explain how it can come into existence. By following the structure of

the read only memory for the PMS, with the "pattern data" as what is encoded and

stored for the implementation of the PMS, it is possible to generate a basic PMU,

which will integrate 3 key elements:

• Output signals (defined by the number of modules in the VP, to act as Control

Signals).

• A internal process (defining the behavior of the PMU itself).

• A set of functions (to decode the pattern data stored in memory so as to

implement the PMS).
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1 # define patternDataSize 6

2 # define moduleNum 6

3 # define memSize 1024

4 /* ... */

5 struct PMU: sc_module {

6 sc_out <bool > CS[ moduleNum ];

7 sc_bv < patternDataSize > memory [ memSize ];

8

9 void process ();

10 sc_bv <moduleNum > decode_CS (sc_bv < patternDataSize >);

11 int decode_time (sc_bv < patternDataSize >);

12 /* ... */

13 SC_CTOR (PMU){

14 SC_THREAD ( process );}

15 };

16 /* ... */

17 void PMU :: process () {

18 int memAddress = 0; // starting point

19 int delay; // last 10 bits

20 sc_bv <moduleNum > CStemp ;

21 /* ... */

22 while (1) {

23 if ( memAddress < memSize ){

24 delay = decode_time ( memory [ memAddress ]);

25 CStemp = decode_CS ( memory [ memAddress ]);

26 for (int i = 0; i < moduleNum ; ++i)

27 CS[i]. write( CStemp [i]);

28 wait(delay );

29 memAddress ++;}

30 /* ... */

31 }

Fig. 5.13: Part of a Basic PMU for the LT_BUS VP

For a clearer representation of what the 3 elements look like within a PMU, please

look at Fig. 5.13.

Fig. 5.13 represents part of a generated PMU for the LT_BUS VP that has been the

running use case. From a rapid inspection of the code shown in Fig. 5.13, it is

possible to identify that the PMU is built as a module with output signals, with a

thread called process that explains its behavior and instructions that correspond to

the functions that decode the pattern data.

As an explanation of the basic PMU, it can be said, that lines 1 to 3, state the

parameters patternDataSize, moduleNum and memSize, which depict the size of each

memory line that keeps a pattern data, the number of modules in the VP and the

size of the memory that includes all pattern data, respectively.

The rest of the code within the definition of the PMU module refers to information

provided by the analysis of both the Structural and the Behavioral Patterns. From the

5.3 Response Framework 91



latter, it is possible to obtain the maximum difference between two time-units, a value

which is 5 ns (which can also be noticed by analyzing Fig. 5.12). This maximum

difference leads to three bits being defined to properly encode the difference between

two time units. Moreover, three extra bits are used to code the modules of the VP

(generating a unique ID for each module), which is a value that is obtained from the

analysis of the Structural Pattern. As a consequence, the parameter patternDataSize

in the code is set to six.

Going through the process thread (lines 17 to 29), it is possible to observe how it

defines the way the PMU is to read each line of memory, decoding the pattern data

to obtain: the duration of modules’ activation (represented by the value of delay

(line 24)) and the modules that must be activated and deactivated in the current

time unit (represented by CStemp (line 25)). Once the decoding of the pattern data

is finished, the values stored in CStemp are assigned to the corresponding output

signals to and these are transmitted to the appropriate other modules of the VP,

which receive them as Control Signals. These output signals are meant to lock the

values of CStemp until the next address of memory (the next line) is read for the

same process to be continued until the end of the execution (which in this case

means the simulation of the VP).

5.3.3 Limitations of the Response Framework

The description of the phases of the response framework has included caveats.

The caveats are mainly related to specific presuppositions and simplifications that

do not invalidate the efficacy of the framework, but put into perspective that the

framework should operate under a set of conditions. The limitations pointed to by

the caveats represent improvement areas and can be grouped into 3 categories of

assumptions:

1. Analytical assumptions: these are presuppositions that are related to simplifica-

tions. For instance, the number of PD is considered equal to the number of CS

in an effort to curb the need to develop a specific algorithm for the extraction

of PD. The supposition that a CS only enables two Power States (ON/OFF)

is also an example of this type of presuppositions. The aforementioned are

logically constructed simplifications that are meant to reduce the complexity

of the analysis.

2. Input assumptions: these are limitations related to presuppositions regarding

the VP being analyzed so as to make sure the framework can properly operate.
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For instance, the VP is expected to be written in a way that implements proper

timing constructs (either Cycle-Accurate or Approximate or Loosely Timed-in

TLM) because these ensure that the activity profile can be retrieved and then

analyzed. Non standard or untimed constructs are fortunately atypical, so this

kind of assumption is not as relevant as a limitation.

3. Technical limitation assumptions: these are limitations related to certain

constraints posed by the tools used in the framework. For instance, in the

running case described in this chapter, there exists a constraint resting on the

assumption that the softwares (SW1 and SW2) run on the processing unit are

statically defined. Statically defined here means that these softwares cannot

themselves contain variable dynamic input, which means they have to be self

contained pieces of code capable of being run without any further intervention.

This limitation is caused by the way the activity profile is constructed, which

rests on the ability to trace the transactions through the instrumented code

by considering them immutable in number. This limitation could be thought

as troublesome for the universal appeal of the response framework, but it

is important to remember that ASIC designs tend to have extremely limited

variable dynamic input use cases. Since the main reason for the design of ASIC

is to conduct properly defined and fixed (static) computing or communication

tasks, dynamic inputs are rare.

The limitations of the response framework can be grouped under the categories

described above, with the categories representing potential areas of improvement.

These limitations signal that the response framework needs certain conditions in

order to remain efficacious, with said conditions not preventing the framework from

serving its intended purpose.

5.4 Concluding Remarks

Specifications in a system-level technical language such as SystemC can be parsed

and analyzed in order not only to conduct power-aware Design Understanding, but

also to unveil the power architecture of the design and thus extract the possible

Power Modes and Control Signals that, together with the Power Domain partitioning

scheme, lead to an appropriate Power Management Strategy. The main goal of the

parsing and analysis of natural language specifications is to be able to serve as the

conduit for proper Design Space Exploration (DSE).
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Based on a Design Understanding tool, a response framework has been devised to

not only perform power-aware Design Understanding in an automated non intrusive

manner, but also to be able to conduct power-aware analysis in a way that adapts to

changes in the design under such analysis. The response framework can analyzed

pure SystemC designs as well as Systemc/TLM designs (whose variable nature as

Virtual Prototypes requires adaptability). The response framework is shown to

consist of two phases: one initial phase that obtains the Structural and Behavioral

Patterns of a design, through a modified Design Understanding tool, and a second

phase which analyzes the patterns with a specialized algorithm so as to be able to

extract the Power Modes, Controls Signals and Power Domains to condense into a

Power Management Strategy as integral part of the DSE process.
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Application of the Response

Framework

6

6.1 ASIC Designs from Technical Language

When the designers of an ASIC think of a specification that they can rapidly use to

build a working prototype, they think of one in a technical language. This is typically

the case when the requirements for the ASIC have been made clear and there is no

need to consult a technical standard or any other natural language specification.

Typically, this scenario is seen throughout the industry when a certain ASIC needs to

be developed and there are previous prototypes available or when the design of the

ASIC lends itself to easy and rapid prototyping.

As an example of the above, consider a Hamming encoder. Once again, an encoder is

a typical element of a design susceptible to be considered ASIC material. Hamming

encoders need to comply with the encoding algorithm they use to provide valid

output. Said output is a new way of presenting the input according to the encoding

rules. This "simplicity" leads to designers rapidly prototyping an encoder, producing

or obtaining a Virtual Prototype (VP) in SystemC or in a similar language.

The fact that at the Electronic System Level (ESL), the VP can be easily grouped and

simulated with other components in a System on Chip (SoC) makes an Encoder VP

an interesting use case for the response framework. Alternative VP for the same

encoder can be compared against each other by using the response framework in

a Design Space Exploration (DSE) fashion, eventually yielding the parameters for

the respective Power Management Unit (PMU) for those alternative Encoder VP. In

this use case (and for similar designs and circuits), the Design Understanding (DU)

aspect of the response framework is especially useful since it supports system-level

power-aware DSE. This same aspect can be applied to other similar designs acting

as benchmarks for the response framework.

As was shown in the previous chapter, the response framework yields a set of Power

Domains (PD), Control Signals (CS) and Power Modes (PM), which is a fine way to

assist designers in the power-aware design of competing designs, showing which

alternative VP may present the most complex Power Management Strategy (PMS)
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leading to an equivalently complex PMU. A complex PMU could be the one with a

highest area overhead from the required extra logic, but one the one that reduces

the overall power consumption the most. A complex PMU could also be complex

to implement, because it requires a more detailed and more robust module to be

devised and more complex functions related to management of the PM and CS.

Decisions as to which VP is "better" based on their respective appropriate PMS and

PMU is made possible thanks to the both phases of the response framework.

To show how the response framework is capable of handling more complex VP

with more components, it becomes important to test it in other situations besides

the comparison of Encoders. This can be done through the use of the response

framework in VP implemented following Transaction Level Modeling constructs. The

timing information in said type of VP make it harder for power-aware frameworks to

adequately set the PD, CS and PM. The proposed response framework does, however,

extracts the PD, CS and PM, that is to say, it provides an appropriate PMS.

A set of benchmarks consisting of varied designs (some with TLM constructs) consti-

tute a validating mechanism for the efficacy and reliability of the response framework.

Since supporting TLM constructs and the changing nature of VP is an important fea-

ture of the response framework, it is reasonable to test how the response framework

fares in the context of a far more complex and realistic use case whose design is

larger (yet similar) to that taken as running case in Subsection 5.3.2.

For the evaluation of the adaptability of the response framework as advertised in

Subsection 5.3.2, the response framework is presented with a LEON3 processor-

based VP called SoCRocket [94]. This VP in SoC is the only freely available VP

with support for power modeling and estimation and is chosen because those

features show the effectiveness of the PMS that the response framework can obtain

from different workload scenarios run within the LEON3 processor. The size and

complexity of the VP are a test to the potential scalability of the framework, as well

as to its adaptability to different workload scenarios.

6.2 The Hamming Encoders and Other Benchmarks

Hamming encoders are well known because of the simplicity of their design. They

have been prototype in a variety of technical languages at various abstraction levels:

from UML dialects [95] to Verilog at the RTL [96]. Not surprisingly, prototypes have

been made at the ESL in SystemC as well.
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Type VP Name LoC #CS #PM

SystemC

FIR Filter 834 3 4
VGA Controller 856 4 3
Packet Switch 1020 10 74
RISC CPU 1960 12 18
Simple Bus 2100 9 8

TLM-2.0

Example-5 650 21 14
Example-6 713 36 34
AT-example 2942 41 29
Locking-two 3831 42 35

Tab. 6.2: The Response Framework for other Benchmark VP

As can be gleaned from Table 6.2, the SystemC designs tend to be small (under 2500

Lines of Code.-LoC). However, it is important to notice that even in an apparently

simple VP, such as a VGA controller 3 PM and 3 CS are still required. Typical small

CPUs for ancillary use, represented in this table by RISC CPU can require many more

PM (18) as well as more CS (7). The increase in the size of the VP is responsible for

the increase in the number of CS and PM (and by extension, PD), but this is not a

linear ratio.

For TLM designs, the number of LoC of the most complex examples is above 2000,

but the number of CS and PM is much greater than for the SystemC designs. This

highlights how sensitive the algorithms of the response framework are towards the

way in which abstract timing plays a role in the setting of CS and PM. The more

abstract the timing information, the greater the number of CS and PM based on the

fact that many transactions expressed in TLM constructs require at least a Control

Signal to ascertain the delivery of the message, whereas the multiple independent

global states the design is able to reach requires more Power Modes.

As a conclusion it can be stated that the response framework is capable of handling

many typical circuits that are candidate for ASIC design. It allows for early stage

power-ware comparison between alternative VP for a some function and successfully

works with designs of different domains, from encoder, to graphic controllers, from

ancillary CPU to TLM designs of medium complexity.

6.3 A Larger TLM VP Use Case

Since it is important that the response frameworks adequately deals with designs

whose Behavioral Patterns are in flux (that is to say, they can change at the system-
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level) during early stage design, a SoC type of VP that consists of multiple System-

C/TLM modules and the ability to run different workload scenarios is a very natural

fit as a test case. The choice for this more complex VP is SocRocket[94].

SocRocket contains more than 50,000 lines of code in SystemC/TLM, representing

modules working together in master or slave mode. As natural for most VP of this

nature, SocRocket is bus-centric, meaning the modules are connected to each other

through a bus, which in this case is a AMBA-2.0 AHB (Advanced High-performance

Bus) bus. The main processing unit of the VP is the LEON3 processor (leon3_0),

which directly connected with the bus as a AHBMaster device.

Other modules contained within the VP are:

• A memory controller (mctrl) connected as AHBSlave to the bus, serving the

memories.

• A ROM module (rom), which remains almost unused.

• An SDRAM module (sdram), which represents one heavily used memory.

• A bus control module (ahbctrl).

• Two initiator modules working as TLM initatiors in master mode (ahbin1 and

ahbin2).

• Two memories working as TLM targets in slave mode (ahbmem1 and ahb-

mem2).

The LEON3 processor in this case will run 6 different softwares which represent

4 different workload scenarios. The rationale behind analyzing these differing

workload scenarios (stemming from different softwares) is that the power parameters

and characteristics, as well as corner cases for each of the workload scenarios vary

significantly. It is important to show how adaptable the response framework can be

to the variable workload scenarios.

The 4 workload scenarios can be summarized and defined as follows:

• S1: Light-weight access to one memory and intensive access to other.

• S2: Intensive access to all memories.

• S3: Light-weight workload on processor (i.e. LEON3 processor).

• S4: Intensive workload on processor (i.e. LEON3 processor).
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Module Activity percentage

ahbin1 10.1775684001
ahbin2 10.1739445552
ahbctrl 100.0
leon3_0 15.189345896
mctrl 55.4683819533
ahbmem1 6.73491574561
ahbmem2 13.3973545932
rom 0.0525457510419
sdram 55.4393911941

Tab. 6.3: Activity percentage of the modules for the JPEG software

Module Activity percentage

ahbin1 22.6298063676
ahbin2 22.6311602178
ahbctrl 100.0
leon3_0 12.8614979318
mctrl 36.858175424
ahbmem1 14.9553866517
ahbmem2 29.742019849
rom 0.00115475464251
sdram 36.8978352731

Tab. 6.4: Activity Percentage of the Modules for the AES Software

So as to better understand the varying impact of the software representing the

different scenarios, let us see the activity profiles for the JPEG software representing

scenarios S2 and S3 in Table 6.3, and for the AES software, representing scenarios

S2 and S4 in Table 6.4.

From the activity profiles it can be read that the activity percentages for ahbin1 and

ahbin2 are more than doubled for the AES software when compared to the JPEG

software. A very similar thing happens for ahbmem1 (6.73 vs 14.95) and ahbmem2

(13.39 vs 29.74). These ratios can be explained by the fact that the softwares belong

to different scenarios. The ratios are relevant not only in that way, but also in the

fact that they significantly impact the power consumption of the VP.

The way the impact of the different activity percentages for the different modules

is felt according to the scenarios, as related to the power parameters (PM, CS and

PD) of the PMU. However, on account of the complexity of the design, the impact

can be summarized by the effect of the PMU built upon the power parameters. As

the PMU is added to the VP, it will reduce the power consumption of the VP and

this serves as validation of the response framework by showcasing how effective the

PMS implemented by the PMU can be for a large use case.

The validating and summarizing results of the response framework applied in the

context of the SocRocket based VP are listed in Table 6.5.
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Scenario Software #Lines of Code #Transactions
Power consumption (uW)

without PMU with PMU Difference

S1,S3 Hello-world 20 5,143 1026942 659337 -35.79%
S1,S4 FIR-filter 123 7,422 1280771 492147 -61.57%
S2,S3 JPEG 943 43,063 1359092 913069 -31.82%
S2,S4 fft 652 124,701 1866998 1011110 -45.84%
S2,S4 Quicksort (QS) 43 133,310 1824925 965922 -47.07%
S2,S4 AES 490 2,090,740 20822862 7518165 -63.89%

Tab. 6.5: PMU Validation for the Different Scenarios for the SocRocket VP

Table 6.5 is easy to read. Columns Software and Lines of Code show the name the

software on the LEON3 processor and its length in term of lines of code, respectively.

The column #Transaction states how many transactions are generated by each

software. Let it be remembered that the transactions are fundamental in the first

phase of the response framework, as the core of the Behavioral Patterns.

Column Power Consumption offers the estimated power consumption values of the

SocRocket VP for each software. Subcolumn without PMU shows the VP power

consumption when no PMU is integrated with the VP (e.g. the VP works in full

power mode), while subcolumn with PMU presents the VP power consumption when

a PMU is added to the VP. As a way to show how without PMU and with PMU differ,

Column Different shows the percentage of power reduction per each software. Given

the fact that the PMU is an added module that consumes its own power, this latter

value is already included in the subcolumn with-PMU. Note that this PMU self power

consumption is variable with the software, but does not exceed 5% of the total

(value that corresponds to the AES software, which means that a generated PMU

presents very low power consumption overhead.

The estimated power consumption values are based on SoCRocket internal power

modeling parameters for the modules of the VP. For the PMU power consumption

estimation, these values are obtained by modeling a PMU as a ahbin type initiator

TLM module from which the Control Signals are sent. This specific module for the

PMU includes the internal read-only memory and the functions that implement the

PMS.

Within the SocRocket SoC [94], a power modeling report function is available. This

feature estimates the power consumed by the modules within the SocRocket platform,

based on a set of back annotations from a 90 nm technology node. The power

consumption is estimated as the sum of the static and dynamic power consumption,

by assimilating physical measurements (such as voltage, current and capacitance

that come from the back annotations from the technology nodes) to elements of the

TLM methodology. Every TLM module (regardless if an initiator, interconnect or
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target), has a value for the static and dynamic power, which is estimated following

the next set of equations:

pstatic = pstaticnorm ∗ (Tend − Tstart) (6.1)

pdynamic =
(eread ∗ nreads) + (ewrites ∗ nwrites)

Tend − Tstart

(6.2)

The static power consumption, which originates from the amount of gates of the

modules fed by a voltage source at any given time, as well as the dynamic power

consumption (originating from the way the modules switch their own power states),

are both targets for power reduction. The estimation (calculation) of both static and

dynamic power consumption does rest on the elements of the equations, which are

explained below:

• pstaticnorm is a fixed value for normalized static power consumption only af-

fected by the size of the technology node.

• Tend and Tstart are extracted from simulation log files as metrics for the activity

period of a given module.

• eread , ewrites , nreads and nwrites are the fixed value for normalized energy

consumption per read and write instruction and the number of read and write

operations respectively. Each of these is also only affected by the size of the

technology node.

For the power estimation values of Table 6.5 the normalized values for AHBIN,

AHBCTRL and AHBMEM (as models for initiator, interconnector and target modules,

respectively) are taken into consideration. While this is a simplification that may

impact the precision of the numbers, it is a reasonable assumption. Arguably the

most powerful technique to curb both static and dynamic power consumption is

Power Gating (powering off unused parts of the design), which is considered as the

technique of use for the generated PMU whose effect is stated in Table 6.5.

From inspecting the power consumption values with and without PMU as stated

in Table 6.5, it is possible to conclude that the the percentage difference ranges

from approximately 33% to 64%, which highlights the applicability of the PMU

(implementing the PMS) that the response framework is able to offer.
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6.4 Concluding Remarks

The response framework for technical language specifications is useful for Design

Understanding at the system level, as well as for power-aware analysis leading to

a generated PMU for a variety of designs (in pure SystemC or in SystemC/TLM,

from processors to controllers). It has been shown to be a tool to rapidly compare

alternative architectures (combinational and sequential) for a Hamming Encoder

(a widely used ASIC worthy design) on the basis of their possible Power Modes,

Control Signals and Power Domains. The unveiling of the power parameters from

the design, as per the non intrusive and automated nature of response framework,

showcases its usefulness at early design stages.

It is also clear from a complex and large TLM based VP (the SocRocket use case) that

the response framework is able to deal with complex designs, yielding a generated

PMU that does make a substantial difference in a VP’s power consumption. The

generated PMU achieves results of up to 64% power reduction for the use case

while showing how effective it is in dealing with changing Behavioral Patterns,

stemming from changes in the software run on the VP. The adaptability of the

response framework is therefore ascertained by this effectiveness.
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Conclusion 7

7.1 Summary

The research presented in this document constitutes both: a summary of the knowl-

edge acquired and produced about specification analysis for power-aware design

concept in ASICs as well as the presentation of contributions enabling said type of

specification analysis to be of practical use. After an introduction to the research field,

the reader was presented with the concept of power-aware design, its system-level

implications and challenges, as well as relevant work on the topic that underlines

the need for specification analysis at the system-level in order to address said im-

plications and challenges. This document addresses the aforementioned aspects by

presenting 2 frameworks, which constitute the 2 parts of the thesis: Part I (Chapter

3 and Chapter 4) dealing with specifications written in a typical natural language (ie.

English), and Part II (Chapter 5 and Chapter 6), dealing with specifications written

in a typical technical language (SystemC/TLM). The contributions of the thesis are

centered around the frameworks for specification analysis presented in Chapter 3

and 5, which have been validated by their applications in the use cases presented in

Chapter 4 and 6, respectively.

Chapter 2 introduced the reader to the key elements of power-aware design, as

well as to what the core implications and challenges are. Chapter 2, in particular,

presented the far reaching implications of power-aware design within the ASIC

design processes. These implications impact not only how power and energy are

managed in and by the digital circuit, but also the circuit’s architecture. The

centrality of the implications was highlighted by the presentation of the challenges

associated with them. Whether via the expounding of techniques such as grouping

(for functional blocks) or via the introduction of metrics that need to be properly

managed (area overhead), the reader was acquainted with the relevant responses

to the implications and their associated challenges. Chapter 2 thus introduced the

setting of the Power Domains (PD), Power Modes(PM) and Control Signals (CS) that

the research work tackled via specification analysis. The responses were presented

in the context of the Power Management Unit (PMU), the archetypal component

that implements the design’s Power Management Strategy (PMS), responsible for
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making the ASIC power-aware. The need to analyze available system-level ASIC

specifications for power-aware design was revealed to be crucial.

Chapter 3 presented the reader with a short introduction to natural language

specification analysis as a field of research, focusing on the salient challenges posed

by the ambiguous nature of natural language. Related works and the state of

the art centered around Information Extraction (IE) and semantic analysis were

thereby discussed, with the proposed framework being described in detail. Via

the use of a semantically oriented analytical scheme, the framework was shown to

be empowered to analyze relevant sentences extracted from the natural language

specifications. This analysis, coupled with the use of rules in an Expert System led to

appropriate responses to the core implications and challenges presented in Chapter

2. The framework is centered around the contribution of rules for the Expert System

to output an appropriate PMS.

Chapter 4 showcased the effectiveness of the framework from Chapter 3 as a means

to respond to the challenges of setting the PD, CS and PM (that is to say, the PMS).

The use cases are representative of components likely to be developed under the

ASIC paradigm (an LZW encoder, as well as an HDMI Port Processor). The validation

of the framework was shown as the setting of PD, CS and PM are found to be in line

with existing validated solutions.

In Chapter 5, the same structure of Chapter 3 was followed. Thus, the reader was

introduced to the field of technical language specification analysis. Very closely

linked to the field of Design Understanding (DU), the main challenges in this type of

specification analysis relates to the need to perform analysis of Virtual Prototypes

(VP), as VP are the traditional system-level technical language based specifications

in need of analysis for power-aware design. The proposed framework (specifically

its algorithms) was discussed therein. The algorithms (essentially, rules) constitute

the core contribution of the framework, enabling a PMS to be extracted from the

structural and behavioral information which are, in turn, derived from a technical

language specification.

In a similar fashion to Chapter 4, Chapter 6 offered the reader the results obtained

by the use of the proposed framework introduced in the preceding chapter. In this

chapter, the framework was shown to be applied to alternative encoders (Hamming

based), as well as to a set of classical benchmark designs and to a Virtual Prototype

(VP) of a System on Chip (SoC) running different softwares in its processing unit.

The results obtained by the use of the framework were validated by their usability in

the context of a zero-knowledge power-aware exploration of the VP.
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7.2 Future Work

While the proposed frameworks for both natural language and technical language

specifications have been proven to be effective, effectiveness is just one factor in any

long term evaluation of success. As a proof of concept, the frameworks show what is

possible through specification analysis for a power-aware design of ASICs. These

frameworks are hopefully a stepping stone in further research.

As ASICs continue increasing their presence in the world, mainly through the

expected manyfold growth of the Internet of Things (IoT), the challenges and issues

that relate to power-aware design will only appear more urgent. And as natural

language and technical language specifications are likely to continue to be the first

design documents in a top-down down approach to digital circuit design, frameworks

to process these documents will need to progress further.

The state of the art for natural language specification analysis for ASIC design is

still it its infancy, with Expert Systems (ES) frameworks being in desperate need of

groundbreaking efforts. Industrial grade applications of any kind of framework for

natural language specification analysis are very slowly becoming more common in

select areas of Electronic Design Automation (EDA), such as system level verification.

However, power-aware design and security aware design are areas yet to see a

similar upsurge in usage.

The state of the art for technical language specification analysis is in a more vibrant

state compared to its natural language counterpart. However, frameworks and

research lines in this field still lack a robust approach to the implications of power

management, with verification tasks being almost their exclusive focus. Frameworks

to perform DU are slowly gaining traction as the need for holistic Design Space

Exploration (DSE) grows unstoppable.

Power-aware design of ASICs at the system level is to be developed to allow designers

to make decisions about the best architecture to manage the IC’s power implications.

As any decision making process, power-aware design at the system level needs to

conducted via an holistic understanding that mimics the way designers put their

domain expertise to use. So as to make the holistic understanding more effective

and reliable, the following are just possible lines of work that can be explored:

• Knowledge-based Ontology for power-aware design concepts at system

level. This line of work would potentially allow for a systematization of the

already available knowledge in the area. Research on ontologies is likely to
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attract computer linguists and other specialists to the area of specification

analysis, in which they are sorely needed.

• Improved decision support based rules for ES and DSE tools. In order

to better approximate the type of information extraction and processing per-

formed by human designers, the rules for ES and DU (as well as for any other

decision support metric) have to be enhanced. For the enhancement to take

place, better and deeper encoding of said rules has to be developed. This line

of work is ripe for knowledge engineers to start contributing extensively.

• Power-aware technical specification and standards. Technical standards (or

other similar specifications) for the ICs in the IoT or even for existing complex

system where ASICs are deployed are bound to require writing that aids in

power-aware design decisions. Standard committees and other such authors

may be prodded to start including chapters devoted to power in specifications,

thus leading this line of work to get the influx and contributions of technical

writers and of technical developers alike.

Ultimately, any future line of work should aim to help ease the transition of proof of
concept works and frameworks into the industrial world. While the transition itself
may be filled with obstacles, the history of the EDA community is equally filled with
successful examples overcoming those obstacles. As it is common for many human
endeavors, only time will tell how the transition takes places and how and when the
ASIC design community starts to reap the benefits.
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