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Abstract

The field of Electronic Design Automation (EDA) is a growing field whose growth is
fueled, among many factors, by the ever increasing number of Application Specific
Integrated Circuits (ASIC) that are required by several digital systems. Amidst the
current explosion in the design and production of Internet of Things (IoT) (typically
battery powered devices), the need for power-aware design has come to reach
critical importance. The need for a holistic view (power-aware) of the implications
and challenges brought forth by the need to curb and properly manage power
consumption power has revealed a need for the EDA field to explore system-level
top-down based methodologies. As a response to the needs, this research document
presents two frameworks based on specification analysis at the system-level in order
to address the holistic view of power-aware design. One of the frameworks focuses
on system-level specifications written in natural language (ie. English), whereas
the other focuses on system-level specifications written in a technical language
(ie. SystemC). The frameworks are shown to be able to analyze these types of
system-level specifications as a means to aid designers in power-aware ASIC design
at the system level. These frameworks encapsulate the contributions of this thesis,
which are defined by the proper devising of analytical rules to parse the system-
level specification so as to extract the basic underlying Power Management Strategy
(PMS) laid out of by the specification under analysis. Use cases that show the
effectiveness of the frameworks in aiding designers include typical ASIC elements
such as a bus, a port processor, encoders and a processor centric programmable
System-on-Chip (SoC), all of them also typical components of IoT devices. The
research document ends with a conclusion both summarizing the work and pointing
to possible future extensions to the frameworks and general research lines that are
possibles avenues for future developments in the field of specification analysis for
power-aware system-level ASIC design.
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1.1

Introduction and Motivation

In design, one of the most difficult activities is to
get the specifications right [1]

— Donald A. Norman
(Professor. Usability engineering and design
expert)

Introduction

Much has transpired since the origins of the Integrated Circuit (IC) design industry.
50 years after Gordon Moore first famously observed and proposed the "law" that
bears his name, explaining how the number of transistors doubles every year, the
IC industry has further developed following the upsurge in the demand for the
highest processing power in the smallest possible package. What began in the late
1940s as a way to combine discrete electronic components to produce amplification
devices, took a far more generic turn when Jack Kilby showed a working monolithic
integrated circuit at the end of the 1950s [2]. While trying to find a way to improve
the reliability of the interconnected modules made of discrete components (thereby
offering a way to solve the so called "Tyranny of numbers"), Jack Kilby ushered an
era in which the electronic circuits grew in complexity, reliability and performance
and decreased in size and price[3].

Onto the 1960s and 1970s, the applications of the IC products grew, as their design
and manufacturing costs diminished. The evolution of the IC design industry in
these decades, also led to the emergence, development and consolidation of the
Electronic Design Automation (EDA) field, whose techniques and tools supported
the ever increasing rate of development. The automation, which began with tools
for placement and routing (that is to say, mainly layout tasks), took a massive leap
forward in the 1980s, when the number of integrated components in ICs boomed
into the hundreds of thousands. Indeed, by the early 1980s, the relatively artisanal
way in which IC design had been conducted for the previous two decades, had been



transformed by systematization, spearheaded by the work of pioneers such as Carver
Mead and Lynn Conway [4].

As the complexity of IC products was increasing, the EDA industry found itself
needing to address an equally increasing number of recurring concerns in the design
flow. Many of these concerns were no longer only associated with the layout tasks
that had been the object of most of the automation techniques being developed thus
far [5]. As the IC design industry moved away from focusing solely on the placement
and routing phases of a design, ad-hoc design languages became the preferred
way to deal with challenges brought up by the need for verification (assurance
of compliance of the design with an specification) and validation (assurance of
addressing the need that the design is supposed to meet) [6].

The main companies in the EDA industry became closely acquainted with the
use of simulation methods as a viable approach to addressing the demands and
requirements of an industry with ever expanding fields of application. What had first
started as transistor and logic simulation, incorporated functional simulation, where
the increasing need for architectural verification was more appropriately met [7].
Even before that time, the IC design industry had also begun to eye and behold tools
and techniques of formal verification (such as model checking and temporal logics)
as a more suitable way to address the stringent safety and security requirements
of some industries in which ICs were being deployed (as become the case with the
aerospace and defense industries).

By the 1980s, the IC industry had been the main driving force behind inherently
programmable microprocessors and other general purpose highly configurable com-
puting platforms, which the public had begun to realize were at the core of their
digital electronic devices. However, in addition to enabling the design of highly
complex comprehensive digital information processing circuits, the EDA community
(now a blossoming industry of its own), also enabled the development of more spe-
cialized ICs, which became known under the moniker Application Specific Integrated
Circuit (ASIC). The ASIC world benefited immensely from the creation of Hardware
Description Languages (HDL), for this mirrored the flexibility of platform independent
high-level software programming languages, thereby allowing designers to think of
their circuits in increasingly more abstract terms [8] [9].

The creation of HDLs led to a shift away from the transistor and logical levels into
the Register Transfer Level (RTL), which better suited the design flow from a top-
down perspective. The Register Transfer Level not only allowed for a fairly common
physical synthesis agnostic platform (as per abstracting away the design from the
choice of the underlying transistor and gate technology), but also allowed for a way
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1.2

to design an IC from a more architectural point of view [10]. Such a point of view
led to more system-wide approaches to the validation and verification challenges.
Further expansion of the integration of ICs (many of them ASICs) to create full
fledged digital System on Chips (SoCs) unveiled a pressing need for system-level
approaches to address not only validation and verification, but also requirements
that were themselves at a system level [11].

The emergence of SoCs (fueled by the need for self contained digital systems) meant
that many ASICs turned into Application Specific Standard Products (ASSP) [12].
These products were and continue to be, ICs performing specialized standardized
tasks typically present in many SoCs (such as buses or encoders/decoders). The
specialized and standardized nature of these ICs is typically underlined by elements
of their design such as an archetypal architecture. Furthermore, such a characteristic
architecture of an ASSP is the natural byproduct of a detailed specification that the
design has followed. The necessity of following and conforming to a specification
(essentially a set of requirements to comply with) is at the core of the design of these
ICs.

Motivation

Regardless of whether the IC is an ASSP or an ASIC, following and conforming to
a specification is paramount. However, as crucial as this precept is in the design
flow for any IC, usually the task associated with complying with a specification
are quite demanding. The main difficulties are almost always associated with the
ambiguities and the extent of the specification. Specifications are rarely of a formal
nature (ie. described in a logical formulation), but are instead typically produced
in a natural language (ie. English) or in a technical language (ie. a HDL), which
captures requirements in more generic concepts. What is more, specifications are
the starting point of almost all top down design flows, in which the architectural
decisions are taken in early stages [13].

By beginning of the 21st century, technical standards (that is to say, standardized
specifications) had grown to cover most, if not all, of the functional concerns related
to any ASIC (or ASSP). Verification and validation of the functional requirements
had escalated to system level, beyond RTL, in an effort to reduce the iteration
cycle required by successive refinements to fulfill the requirements. In these system
levels (such as for instance, the Electronic System Level (ESL), which is known for
the presence of Virtual Prototypes, the SystemC technical language [14]) and the

1.2 Motivation
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Transaction Level Modeling (TLM) methodology [15], the EDA community has strived
to ensure reliability in functionality by expanding the use of formal methods and by
extending coverage metrics from lower levels of abstraction.

Also by the turn of the millennium, it became discernible that functional require-
ments were no longer the only sine qua non requirements stemming from speci-
fications. Security, safety and power/energy consumption concerns had risen to
rival the sense of priority accorded to functionality, to the point that it had become
increasingly impossible to design an IC with only functionality in mind. Indeed, if
the prototype for an IC did not meet the security provisions or the power or energy
budget, the prototype was to be rejected. Such a heightened importance of non
functional requirements, meant that top down design flows were then in need of
some changes to reflect such an evolution [16].

While the importance of security and safety in ICs (especially so regarding data
protection) is unquestionable, the evolution of the design flow to address pow-
er/energy consumption concerns has shown itself to be a top priority. From the
transistor level up to a system-level, many of the innovations introduced to deal
with the power/energy concerns, have been the result of wide ranging research
leading to the concept of power-aware design. With the advent of the Internet
of Things (IoT), in which ASICs play a central role, these innovations that have
brought up power-aware design are shaping up a renovated ASIC design flow [17].
Not unlike the functionality focused design flows, the focus of power aware design
techniques has shifted towards system-level architectural decision making. Owing to
such a shift, and going beyond the reach of traditional HDLs designed to implement
existing designs, specification analysis (often the first step in top down design flows)
is becoming a focus area in the coming years [18].

Contributions

The contributions of this doctoral thesis are centered on addressing some of the
challenges of system-level power-aware ASIC design via focus on specification
analysis, for both specifications in natural and technical language [19] [20]. For most
intents and purposes, the intention is to help usher a new stage in the revamping
of top down ASIC design flows. In such a new stage, specifications written in
natural/technical languages are considered the foundational design documents at
the system-level. As such, specifications (whether technical standards or functional

Chapter 1 Iniroduction and Motivation



descriptions) are the main source of information for power -aware decision making,
significantly integrating functionality and power/energy consumption concerns.

This document presents two contributions:

* A response framework to process (parse and analyze) any natural language
specification (in English) in order to unveil the intrinsic power structure of a
prototype that complies with said specification. The originality of the frame-
work lies in its use of semantic analysis techniques and associated rules to
be able to infer the innate power structure that is produced by any prototype
following a functional description, typically found in the specification. This
power structure (represented by a set of numerical parameters) allows for
rapid power-aware exploration of a design, as well as working as a baseline
comparison point for decision making regarding the power/energy consump-
tion concerns. The core of the contribution is centered around the associated
rules that enable the inference.

* A response framework to process (parse and analyze) any technical language
specification (in SystemC/TLM) so as to reveal the underlying power architec-
ture that a Virtual Prototype (acting as a functional description) produces by
the mere fact of implementing its intended functionality. The originality of the
framework lies in a set of algorithms that can extract numerical parameters
describing the underlying power architecture. This power architecture comes
with both benefits (in reduced power consumption) as well as costs (power
and area overhead arising from the need to manage the modules of the IC
with extra logic) and these are meant to be taken into consideration as part of
the Design Space Exploration (DSE) at the system-level in order to decide on
the most appropriate power-aware architecture for the design.

Both frameworks constitute a large step towards system-level power-aware specifica-
tion analysis for ASIC design, as they are able to significantly automate (in as much
as possible) tedious tasks that have made system-level power-aware design a labori-
ous process highly dependent on the expertise of seasoned designers. The assistance
provided by the frameworks to designers is to be thought of as a systematization of
a portion of the designer’s system-level expertise within the frameworks.

Part of the research work that leads to the framework has been previously presented
in several publications that have been produced throughout the doctoral process.
Any content of this document that is not attributed to a third party is either present
verbatim in these publications or is a modified form of some content within said
publications and is therefore consider own work. The publications are listed as:

1.3 Contributions



1. David Lemma, Mehran Goli, Daniel Grof3e, and Rolf Drechsler. “Power intent

frominitial ESL prototypes: Extracting power management parameters”. I[EEE
Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC). 2018.

. David Lemma, Daniel Grol3e, and Rolf Drechsler. “Natural Language Based

Power Domain Partitioning”. IEEE International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS). 2018.

. David Lemma, Mehran Goli, Daniel Grolde, and Rolf Drechsler. “Towards

Generation of a Programmable Power Management Unit at the Electronic
System Level”. IEEE International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS). 2020.

1.4 Thesis Structure

10

After this introductory chapter (Chapter 1), the research work laid out in this
document is structured as follows:

* Chapter 2 presents power-aware design as a concept. After a small prelude

containing the rationale behind the concept, the implications and challenges
in the power-aware design realm are put forward. Further into the chapter,
the reader is introduced to the idea of a Power Management Unit (the most
typical response to the management of the power/energy implications and
challenges) with its main defining parameters: the Power Domains (PD), and
the Control Signals (CS) and Power Modes (PM). An effective way to determine
the PMU parameters from a system-level specification (in natural or technical
language) is then shown to be crucial for a successful power-aware design.

Part I concerns itself with the first contribution (a framework for the processing
of natural language specifications). Part I consists of a theoretical chapter
(Chapter 3) that explains the basics of specification analysis as performed for
those documents when they are written in a natural language (English). In
addition, there is a relevant works section and a presentation of the framework,
based on Information Extraction (IE) and semantic analysis techniques (based
on a recently developed grammar annotation scheme); and an application
chapter (Chapter 4) that shows the applicability of the framework of the
previous chapter to the unveiling of the inner power structure caused by the
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specification in terms of some or all PMU parameters (PD, PM and CS) for
ASIC type use cases.

Part II deals with the second contribution listed (how to process a technical
language specification in a power-aware fashion). Part II is made of: a theo-
retical chapter (Chapter 5) that explains the basics of specification analysis
as performed for those documents in a technical language at the system-level
(Virtual Prototypes in SystemC/TLM). This chapter also contains a section on
the relevant works in the field and a presentation of the theoretical framework,
based on Design Understanding (DU) techniques and tools; and an application
chapter (Chapter 6) that shows how the theoretical framework presented in
the previous chapter allows for the unveiling of the intrinsic power structure
produced by the Virtual Prototypes, a comparison between potential alterna-
tives and an estimation of the effect of the unveiled power structure in the IC’s
power consumption.

Chapter 7 brings forth a conclusion to the research work and offers some in-
sights into possible future developments along several research lines branching
from the research work.

1.4 Thesis Structure
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Power-Aware Design:
Implications, Challenges and
Responses

Power has become the number one problem. All
design targets are being constrained by
power[21].

— Gary Smith
(Electronic Design Automation analyst)

2.1 Preface

The proliferation of battery powered devices at the end of the 20th century, cou-
pled with an increased awareness of the need to manage power/energy consump-
tion, have been major causes spurring the development of power-aware design for
ASICs.

While power consumption and energy consumption are not equivalent, they are both
metrics that give information about the fulfilling of the requirements associated with
the physical variables involved in the calculation of power/energy. Since energy is
a variable derived from power (being the sum of power consumption over a given
time period), the latter is the most usual target of many of the techniques developed
by the IC design industry. However, power-aware methodologies also consist of
techniques that help designers manage energy consumption, via the management of
power throughout varying periods of operation, so as to meet any applicable energy
budget. (In this document the word power will serve as the generalizing adjective
that encompasses both power and energy as described above).

Power, as a magnitude for IC design, can be calculated or estimated by the use of
a primary simplified equation. This equation, Eq. 2.1, contains two terms: static
power and dynamic power, which are themselves defined by other simplified
equations with their own terms in Eq. 2.2 and Eq. 2.3. Static power encompasses

12



the dissipation of power produced by the IC by virtue of it being connected to an
energy source. Dynamic power encompasses the dissipation of power by virtue of
the IC switching its components according to operational need.

Piotal = Pstatic + denamic 2.1
Pstatic = Vcc * Ileak (22)
denamic =Cx* f * V052 (23)

Inside Eq. 2.2 and Eq. 2.3 are several physical variables whose estimated or
calculated values are related to the physical synthesis of the circuit (such as voltage
(V), capacitance (C), frequency (f) and current ({;.,x). In the case of ASICs some of
these variables are occasionally dictated and regulated in the specification (typically
a technical standard). Regardless of whether or not the variables are directly set in
some specification, the physical synthesis stage of the IC design process requires that
they are known, as they are crucial in the evaluation of compliance with a power
budget.

The terms in the equations are averages (given the simplified nature of the equa-
tions), but such equations could be used to obtain a value for power dissipation for
every transistor in the IC. Such a value would be extremely accurate, regardless of
the fact that is was obtained through the use of averages. This level of accuracy in
power dissipation values is typically not feasible in the current state of IC design,
since the number of transistors is well beyond the millions. However, provided
that the time and computational resources are available, the accuracy of the power
dissipation values can be guaranteed to be extremely high at physical synthesis
stage.

As power/energy consumption became a crucial design requirement, the way to
address the requisite was initially through directly targeting the physically significant
variables that affected power dissipation. The techniques developed to manage the
physically significant variables constituted the core of what became known as low-
power design methodologies [22]. Indeed, by the 1990s and even before that time,
power consumption management was characterized by the use of algorithms and
heuristic rules that minimized power dissipation as much as it was possible. These
algorithms and heuristic rules were focused on lower levels of abstraction (transistor
and gate level) where the variables could be directly managed. Furthermore, the

2.1 Preface
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ways in which power dissipation was minimized were mostly orthogonal (that is,
independent) of other implications and requirements in the design process.

However, with the growing complexity of ASICs (especially ASSPs), their specifica-
tions began to state requirements that greatly influenced each other. This turn of
events led to low power design methodologies beginning to fall short of the global
integrated approach which came to be required. The EDA industry responded to
the challenge by putting forward a renewed set of methodologies, which became
known as power-aware design. Closely linked to low power design methodologies,
power-aware design and low-power design were not exactly addressing the same
concerns. A power-aware system was (and is) not always a low-power system.

As stated by Unsal and Koren [23]:

It is important to note the conceptual difference between power-aware and
low-power systems. In low-power design, the main goal is minimization of
power. On the other hand, a power-aware system is one in which meeting

power and energy goals is a significant design consideration|...]

Low-power design methodologies are usually part of power-aware design method-
ologies, but do not constitute the totality of them. Furthermore, power-aware design
may even preclude the use of some low power design techniques.

Power awareness in methodologies for IC design is meant to meet the power/energy
requirements and concerns in a comprehensive fashion. In the words of Pedram and
Rabaey [24]:

Just as with performance, power awareness requires careful design at several
levels of abstraction. The design of a system starts from the specification
of the system functionality and performance requirements and proceeds
through a number of design levels spanning across architectural design,
register transfer level design, and gate level design, finally resulting in a
layout realization.

As per the shift to power-aware design methodologies, many of the associated tech-
niques ceased to be only concerned with the direct management of the physically
relevant variables at lower levels of abstraction. In raising to gate level and even
to the Register Transfer Level (RTL), both the detailed information of physical syn-
thesis stage and the ability to directly control the physically relevant variables are
reduced.

In higher levels in the abstraction ladder (for instance, a system level such as the
ESL-Electronic System Level) the accuracy in the calculation/estimation of power
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dissipation is lowered as per the increased abstraction. The reduced accuracy is
the result of lacking the detailed information that is available in physical synthesis
stages. At the same time, the effect on the management of power consumption
of whatever techniques used by the power-aware methodology at hand becomes
increasingly noticeable. In many cases, techniques that are part of the power-aware
design methodology at system-level are less focused on optimization of a given
architecture than they are about being useful to architectural decision making. The
impact of architectural decision making can be shown via a design level ladder
featuring the different the different design stages.

Implications

As can be seen in Fig. 2.1, the nature of the design level ladder is well represented
by pyramids depicting the power saving opportunity and the optimization effort
involved for each level, from the system level to the physical level. Following a
top-down perspective, it is becomes clear that on a system level, the impact of the
techniques used by a power-aware methodology is at its highest, with the effect
(power saving opportunity) not only decreasing significantly in lower levels of
abstraction, but also requiring much more optimization effort. While the accuracy in
the estimation of the effect at higher levels of abstraction is much lower than closer
to implementation levels (eg. gate level), the dissimilar orders of magnitude of the
estimated effects make it a compelling reason for the EDA industry to focus heavily
on sound architectural decision making techniques.

Architectural decisions typically encompass a process of specification analysis that
is done within a set of processes that the IC design industry labels Design Space
Exploration (DSE) [26] [27]. DSE is a set of processes that attempt to compare
and contrast different architectural alternatives that follow the specification for a
given design. Typically, low abstraction level DSE is the realm of multi objective
optimization algorithms with special focus on finding the optimal solution from
within the different architectural alternatives [28]. In order to perform DSE at a
high abstraction level it is paramount to be aware of the intended functionality of a
system. Such an awareness typically entails knowing how the functional tasks of the
design are implemented [29]. Both the originally devised architectural alternatives
and the potential optimized solutions are presented in terms of the components at
different level of abstraction, as components encapsulate and abstract away many
(if not all) of the design factors present at the set of simplified power equations
previously presented.

2.2 Implications
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Abstraction Power Saving Optimization
Level Opportunity Effort

System 10-20X

Y

Behavioral

Logic

A 4

Physical

Fig. 2.1: Design Level Ladder and its Impact on Power from [25]

Based on the concept of component, the implications of a proper power-aware DSE
process become easier to describe. Consequently, to conduct power-aware DSE on a
given system provided by an IC it becomes necessary to analyze the impact of the
components on the way power is consumed and on how it should be managed. The
power structure, which is the byproduct of the intended functionality of a system,
is defined by the boundaries and interactivity of the components and needs to be
properly known. Whatever chosen arrangement (architecture) of the components,
as well as the power structure they entail, needs to also be evaluated in light of both
their fulfillment of the functional tasks required by the design and their impact on
the way power is managed by the design (for its benefits and associated costs).

For the results of power-aware DSE to be of any practical use, the functional tasks
that the system should be themselves be examined through a profiling process. The
process of profiling the functional tasks can be summarized as the characterization of
the active/inactive periods of the systems as dictated by the fulfillment of the tasks.
The profiling process done on the functional tasks can be performed independently
of any decision concerning the components, but the former affects the latter and
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Software/Hardware partitioning
System/ Power Strategy
Behavioral Protocols/Algorithms

Component design
Power Control Scheme

Routing/Synthesis
Logic/Physical Power-Analysis and Tune-Up
Power-aware floorplan

Fig. 2.2: Design Levels and Design Tasks Associated with Them based on [30]

should be thought of as the main starting point of power-aware DSE at higher levels
of abstraction (such as the system levels).

Challenges

The series of steps that summarize power-aware DSE are summarized in Fig. 2.2.
By looking at it, it becomes noticeable that the step at the top of the figure, under
System Design, deals with tasks of planning nature that are run at system level,
establishing the architecture of the IC. Among the tasks is deciding Power Strategy,
which is obviously the most important factor when designing an architecture (a
power structure) to back said strategy. Whatever functionality decision taken at the
beginning stages of the IC design process is linked to a similar decision related to
power at a similar stage. For instance, once the design reaches the RTL stage, the
Power Control Scheme needs to be decided on and subsequently verified. Furthermore,
in the implementation stage, which encompasses the logic and physical level in
Fig. 2.1, Power Analysis and Tune-up are important power-aware tasks, alongside
deciding on the Power-aware floorplan.

Power-aware design methodologies must enable sound architectural decisions that
meet both functional and power related requirements. In addition to the need
for judicious architectural decisions that fulfill both functional and power related
requirements, whatever resulting byproduct of these decisions, should be analyzed in
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Technique

Description

Clock gating

Disables clock tree part not in use. Synchronous block stop its operation.

Operand isolation

Prevents switching of inactive datapath element.

Logic restructuring

Moves high switching logic to the front and low switching logic to the back.

Transistor resizing

Upsizing reduces dynamic power, downsizing reduces leakage power.

Pin swapping

Swaps the gate-pins in order the switching to occure at pins with lower capacitive loads.

Multiple supply
voltages

Different blocks are operated at different (fixed) supply voltages. Signals that cross voltage domain
boundaries have to be level-shifted.

Dynamic voltage
scaling

Different blocks are operated at variable supply voltages. Uses look-up tables to adjust voltage on-
the-fly to satisfy varying performance requirements.

Adaptive voltage
scaling

Different blocks are operated at variable supply voltages. The block voltage is automatically
adjusted on-the-fly based on performance requirements.

Frequency scaling

Frequency of the block is dynamicaly adjusted. Works alongside with voltage scaling.

Power gating

Turns off supply voltage to blocks not in use. Significantly reduces the leakage. Block outputs float
and need to be isolated when connected to active block.

State retention power
gating

Stores the system state prior to power-down. Avoids complete reset at power-up, which reduces
delay and power consumtion.

Memory splitting

The memory is splitted into several portions. Not-used portions can be powered down.

Fig. 2.3: Frequent Power management Techniques from [31]

comparison to potential alternatives. Typically, high level decisions of architectural
nature reduce the number of potential alternatives in the design, which implies the
use of a particular set of power management techniques. A set of power management
techniques applied in a defined way constitute a power strategy, whose effectiveness
and associated costs should be properly analyzed.

A Power Management Strategy (PMS) (also known as a Power Strategy) is pursued by
the rational application of the adequate set of power management techniques. Some
of these techniques (presented by D. Macko [31]) are listed in Fig. 2.3. Many such
techniques are susceptible to classification under the abstraction level which they
most prominently target. Typically, techniques related to direct effects on physical
variables that are responsible for power dissipation (eg. voltage, capacitance and
current) are targeted at transistor and gate levels. Techniques that indirectly affect
the physical variables are typically used at higher levels of abstraction (eg. the RTL
and system levels). In any case, techniques are to be applied throughout the entire
design process [32] [33].

Any set of power management techniques may also be sorted into categories ac-
cording to the term (dynamic or static power) of Eq.2.1, that they most directly
impact. Such a simplified classification is neither unreasonable nor arbitrary, since
the concepts of dynamic and static power remain extremely relevant in the general
literature in the field. A key example of the relevancy of classifying power man-
agement techniques according to their influence in terms of the more generalized
dynamic or static power can be seen in Table 2.1. In this table, besides their influence
on dynamic or static power, the impact of some of these techniques in area and
power overhead, as well as in the overall design are also shown to be different. It is
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then evident that power management techniques need to be used concurrently for
most IC.

Tab. 2.1: Some Power Management Techniques and Their Impact

. . Impact
Power Static Dynamic Area Power on
Management Power Power overhead | overhead overall
technique influence | influence .
design
Clock Gating 0 | Very high Low Low Medium
Power Gating Very high 0 Medium Medium High
?g;i?;i}g‘gﬂ;ii? Medium High High Medium | Very high

While (re)producing an exhaustive list of power management techniques is not
within the purview of this chapter, the techniques listed in Table 2.1 are further
explained in the next paragraphs. These power management techniques are well
known for their impact extending all throughout the abstraction ladder. It is because
of the influence of these techniques on the effectiveness of the PMS that an intelligent
application of them is of extreme importance. The techniques are: Clock Gating (CG)
and Power Gating (PG) and Dynamic (Voltage) Frequency Scaling (DVFS):

Clock Gating (CG): is a technique based on switching off the clock signal for any
given component whenever there is no need for said component to switch its internal
state. The granularity with which the technique is applied can vary from gate level to
RTL and beyond. As the signal under management is that of the clock, the dynamic
power term of the total power equation is the one impacted, whereas the static term
is not. Despite the absence of influence on static power consumption, the technique
is widely used as typical ASICs have extremely large and complex clock trees for
which pruning yields valuable results. CG is typically implemented at RTL or gate
level, but the general principle operates on the behavioral level and the system
level.

Power Gating (PG): is a technique based on switching off the voltage supply
from any given component whenever there is no need for said component to be in
operation. Typically, this technique is based on examining the active/inactive cycles
of components so as to power off those in their inactive cycles. The fact that voltage
supply is cut off from any given component (that is, it is made 0), essentially means
that the impact on the static term constitutes the salient point of the technique. PG,
like Clock Gating, is implemented at RTL or gate level, but its roots are at behavioral
and system level. Unlike Clock Gating, PG greatly affects the static power term of
the total power equation.

2.3 Challenges
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Dynamic (Voltage) Frequency Scaling (DFVS): is a technique by which any given
component of the IC (typically a design element at the RTL, such as a buffer, a
register, an adder, etc.) is run at a certain voltage and frequency value pair that
maximizes its output or general performance while remaining under the power
or energy budget. In general, low voltage-frequency value pairs reduce power
consumption at the expense of performance degradation. However, given that
performance requirements are neither static throughout the operation of the IC, nor
homogeneous for every component, DVFS is a feasible attempt to reach a desirable
tradeoff, typically being a technique in widespread use at the RTL, affecting both
the dynamic and static power terms of the total power equation.

While the aforementioned techniques have a direct influence on physical variables
(voltage, frequency), they also have an indirect effect on them via the architec-
tural impact on ICs produced by the power management logic required for their
application. In order to apply DVFS, CG or PG in an IC, the latter has to contain
proper power management logic, which leads to associated overhead costs (such as
the extra power dissipated by the required by the new logic or the increased area
required by the physical synthesis of said new logic). The associated overhead costs
can be thought of as one of the most evident and inevitable tradeoffs in the selection
of a PMS.

Responses

It is a fairly common occurrence for the PMS to be carried out by a Power Management
Unit (PMU). An illustrative PMU is made of a component with control over the power
management logic. In ASICs, the PMU is frequently a very simple structure which
drives signals controlling the execution of the chosen power management techniques
as they are applied to control all other components. Frequently containing a type of
Finite State Machine, a PMU has the PMS encoded in its own structure. By being
the vessel than ensures the implementation of the power management techniques,
the joint associated costs of these techniques can be summarized as the overhead
costs of the PMU itself.

Power Management Unit (PMU)

The PMU itself (being a virtual aggregation of the power management logic of an IC)
leads to an increased power consumption, even when one of the typical main goals
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behind the existence of such a unit is to reduce the overall power consumption of the
IC. The overhead costs of the PMU are therefore of great importance following the
corollary behind the statement "spend power to reduce power". Furthermore, the
architectural impact of the PMS, which is represented by the structure of the PMU,
acquires relevancy as it can lead to increased difficulty in validation and verification
tasks both for the PMU and for the overall IC design.

Given the need for a Power Management Strategy for any properly designed ASIC,
the associated costs of realizing that strategy (the implications of power-aware
design) need to be handled carefully within the PMU. The PMU has to be designed in
a power-aware manner, following successful DSE tasks that: effectively deal with the
collateral effects of the PMU on any given ASIC (such as extra power consumption
and endogenous verification effort already mentioned), minimize the expected extra
management logic (reducing the area required for physical synthesis) and ensure
that any concomitant power related decision is made in harmony with any non
power related concern.

Decisions on the validity and proper implementation of the PMS in the PMU are
dictated by how satisfactorily said strategy addresses power related requirements
(for instance, the meeting of a power budget). In order for the decisions to lead
to proper responses that fulfill a power related requirement, the tasks that provide
the basis for the making of those decisions must be not only technically fitting,
but also comprehensive. The rationale behind technically fitting, comprehensive
power-aware DSE tasks leading to sensible decisions is in the global, architectural
impact of the latter.

As a PMU represents the embodiment of the PMS, the architectural impact can be
represented via the influence of the latter on two important notions: the functional
block and the area overhead. These two notions showcase the variables that the
PMS both affects and becomes affected by and underscore the comprehensive nature
of the power-aware DSE tasks required to successfully implement the PMU. As such,
the notions are elaborated as follows:

* A functional block is the label for the constitutive elements of components, a
label that can be applied in different stages in a design flow. Being so widely
applicable as a concept means that a functional block can be: a collection
of gates and other similar elements working together in combinational or
sequential logic (at the RTL), a set of algorithm-implementing objects repre-
senting an assortment of units at RTL (when considering the concept at the
ESL, where algorithms are implemented) and even a series of self contained

2.4 Responses
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system level components seemingly working as blackboxes (at the specification

based system level).

In a Gajski-Kuhn Y diagram [34] such as the one depicted in Fig. 2.4, the
concept of functional block is reflected by the bisecting domain labeled "Struc-
tural". Along the arrow (from the center to the most external node) that
states the elements of the structural domain, every element is matched to an
abstraction level (Transistor Level, Gate Level, RTL, Algorithmic Level, System
Level). The same type of matching is available for every element in both
the arrows for Behavioral Domain and Physical Domain The Y diagram is a
graphical way to understand the importance of the concept of functional block
not only within the Structural Domain, but also within the Behavioral and

Physical Domain.

The elements of the Structural Domain correlate with elements of the Behav-
ioral and Physical Domain for each level. Such relations only underscore the
relevance of the functional block for a comprehensive analysis of the design
process. Typically, the highest level of abstraction in the design ladder (the
System Level) ties in the functional block concept to the specifications of the
design, as well as relating it to the global physical partitioning of the chip that
the specification may require.

Tra nsistori*‘a

\ \
| | | | |
| \ \ : / | |
Vo \ \\ —%nsis or Layout | |
\ /
—¢Cell L

Physical Domain

Fig. 2.4: Gajski-Kuhn Y Diagram
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For ASICs or ASSPs, the specifications typically describe the functionality
required of the circuit through listing the algorithms that define it, through
naming the functional blocks that perform the functional tasks required of the
design and also through the placement of relevant system wide constraints
(eg. a power/energy budget, a security or safety check). In this document, the
system wide constraints that become the focal point are those related to power
management. However, a power budget is not the only system wide constraint
that relates to power management.

There is a systemic influence of the power management as a concern in any
design process. Such systemic influence means that the implementation of
the power management strategy for the IC should be taken so as to comply
with a power budget, security/safety checks, while also properly dealing with
the inevitable extra circuit logic required. The additional logic is typically an
undesired byproduct of the implementation of the PMS, one that should be
minimized as much as possible.

When considering the impact of the extra circuit logic, a power-aware design
flow usually leads to a trade-off. The more sophisticated (and potentially
more power-aware) the PMS, the bigger the extra circuit logic required. This
rule of thumb is not meant to be taken as a strict correlation, but nonetheless
serves to illustrate the need for a balance between two potential factors: power
efficiency and extra management logic. So as for a better understanding of the
impact of the extra power management logic, such an impact is described by a
second notion: area overhead.

The area overhead of the implementation of a PMS is a concept that is repre-
sentative of the amount of transistors, gates and other functional blocks that
said implementation requires. This amount is, naturally, in addition to what-
ever was required for the implementation of the functionality of any intended
design, which is consistent with the use of the word "overhead". Given the fact
that area is a constraint in the synthesis of current (and foreseeable) ASICs,
any overhead in this metric is to be carefully dealt with.

While the concept of area overhead is closely linked to lower levels in the
abstraction ladder, the effects can be observed beyond the Gate Level or the
RTL. Not unlike the notion of functional block, the area overhead resulting
from extra power management logic can be considered throughout the levels
of the Gajski-Kuhn Y diagram. Once again, the prototypical functional block for
each level can be considered as the constituent element of the implementation
of the power management logic.

2.4 Responses
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Among the most important decisions that underpin the architectural impact of the
power-aware DSE tasks that influence the notions above are: a) Power Domain (PD)
partitioning and b) the setting of Control Signals (CS) and Power Modes (PM). The
preceding decisions are naturally based on the power structure that is revealed by
inspecting the specification, which yields PD, CS and PM. The frameworks that allow
for this inspection to reveal the underlying power structure are the contributions of
this thesis, laid out in the theoretical chapters of Part I and Part II.

So as to clarify what is meant by PD, CS and PM, the following are non exhaustive,
but clear definitions:

2.4.1.1 Power Domain

A Power Domain is a collection of functional blocks that share the same voltage
source and can be considered a single group whose power can be managed indepen-
dently from other parts of the design. For example, functional blocks that operate
whenever a device is powered are typically part of an Always-ON Power Domain,
whereas other functional blocks that are activity dependent are typical part of other
Power Domains.

2.4.1.2 Control Signal

A Control Signal is the way in which a Power Domain is driven ON/OFF (or into a
different power state) as per dictated by the PMS. For many designs it is reasonable
to assume that each Power Domain will have at least one Control Signal to drive it,
but this Control Signal could potentially have different values leading to independent
and concurrent control of several of those Power Domains.

2.4.1.3 Power Mode

A Power Mode is a given set of the power states (ON, OFF, other) of the Power
Domains during the operation of a circuit. It is therefore, a way to identify the
system wide operational status of a design. Examples of Power Modes are: ACTIVE,
ON, IDLE, SLEEP, OFF, etc.
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2.4.1.4 Power Domains, Control Signals and Power Modes and the PMU

The revelation of the implicit power structure is the basis for the handling of the PD,
CS and PM that are associated with said power structure. Decisions relating to how
the PMU is to properly address the management of power rely on the number of PD,
CS and PM. Consequently, in the following paragraphs the reader is very succinctly
introduced to the basics of both PD partitioning and the setting of CS and PM.

2.4.1.4.1 Power Domain Partitioning Power Domain (PD) partitioning is a process
that deals with the organizational structure supporting the PMS. In essence, Power
Domain Partitioning is the process by which such structure is decided upon. As a
power-aware DSE task, it is typically the first critical decision making process. As
such, Power Domain Partitioning is a key step in setting the basic architecture of the
PMU.

The essence of Power Domain partitioning is, as would be expected, the concept
of a Power Domain (PD). How to arrange the functional blocks in different PDs is
the core of the Power Domain partitioning decision. As illustrated by Fig. 2.5, the
process chiefly sorts the different functional blocks of a design into groups (the Power
Domains). The power properties of these groups (such as, for instance power states-
on,off,standby) can then be managed independently from each other. As evidenced
in the figure, three functional blocks (Block C, Block D and Block E) can be part of
the same power domain (Power Domain 3) if they share the same Power State Table
(PST). However, this may not be desired if the designer wants to manage each of
the blocks individually. A decision on the convenience of such an arrangement (the
Power Domain Partitioning scheme) is the designers’ responsibility.

Typically a fine grained Power Domain partitioning scheme leads to many PD (the
maximum would be given by the number of functional blocks, with one PD per func-
tional block) and an unavoidable area overhead. A more coarse grained approach to
Power Domain Partitioning usually leads to a scheme with reduced area overhead
and fewer PD, but at the cost of missing power consumption reduction opportunities.
The opportunities for power consumption reduction are missed on account of the
impossibility to control the power states of each functional block individually, since
said blocks will be part of the same PD.

To group certain functional blocks together has a deep impact not only on power
consumption, but also on further verification efforts, both for the overall design,
and for the PMU executing the associated power management strategy, as shown by
Agarwal et al. [36] and Wang et al. [37]. The deep impact is also felt in the overall
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Fig. 2.5: Example of a Power Domain Partitioning Scheme from [35]

verification efforts for the design, which once again highlights the tremendous
importance of deciding on a proper Power Domain partitioning scheme for power-
aware design at system level.

2.4.1.4.2 Setting of Control Signals and Power Modes The Setting of Control Sig-
nals (CS) and Power Modes (PM) is a process that details the architecture of the
PMU. Usually done after the PD partitioning process (it can also be done concurrently
with the PD partitioning process), the setting of Control Signals and Power Modes
is the cornerstone of the PMU, a process whose objective is to establish the way of
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operation of said PMU. In essence, CS and PM are numbers defining the behavior of
the PMU, which, in itself, represents the way the PMS is put forward.

For the PMS to be properly deployed, the PMU additionally needs to have the system
Power Modes (such as, for instance, IDLE, ACTIVE, INACTIVE modes) and Control
Signals (which drive the power domains) set. Both PM and CS are widely influential
PMU design parameters. Regardless of how the decision about the determination of
the aforementioned parameters is reached, PM and CS will reflect the complexity of
the PMS, which it itself signals the complexity of the PMU.

Just as is the case of a power domain partitioning scheme, the number of Power
Modes and Control Signals are important because they are usual indicators of the
power intent (that is to say, the power management strategy). The impact of both
PM and CS on the overall costs (mainly amounting to verification time, power
consumption and area overhead) of a PMU is as important as that of the Power
Domain Partitioning process. This impact means that the PM and CS need to be
determined as early as possible in the design flow [38].

A suitable set of assumptions are necessary to keep the approach to determining
(and thus setting) both PM and CS as simple as possible. For instance, a simplified
version of the process can have as premises: a single CS can power ON/OFF a Power
Domain (no complex individual Power States, such as IDLE or SLEEP); and a Power
Mode represents a system wide state (one where the state of each Power Domain is
ascertained), which can be ACTIVE, IDLE, SLEEP or similar.

As a graphical example, please consider Fig. 2.6 and Fig. 2.7, which show a Power
Domain Partitioning scheme and a table summarizing the Power Modes and Power
States for a device. These figures are taken from the description of an IoT device
which has a RF transceiver and an ARC EM processor, suitable for a well known
3GPP standard [39].

The figures show 6 PD (AON, PD1, PD2, PD3, PD4, PD5, PD6) in the bottom
rows, 3 PM (ACTIVE, SLEEP and STANDBY) on the columns, and the Power State,
controlled by a CS, for each of the PD (ON, OFF, "rentention"). This a typical Power
Management scheme, consisting of enough PD, CS and PM, to presumably guarantee
a low power consumption for a battery powered device without needlessly increasing
the complexity of the PMU (which is on the AON-Always ON domain).

Research has been conducted for the complexity costs, concluding in a rule that
basically leads to two statements:

2.4 Responses
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- = AON Always-On-Domain

- =PD1 (Caches, Core logic not in AON)

| ‘ = PD2 (ICCM1, DCCM, XY)

- = PD3 (DFE, RF, PA)

- =PD4 (AHB, RF-SPI-RF-CTRL)

| =PDS5(DBG-UART, HCHUART)

%52 =Isolation cells

Fig. 2.6: An IoT Device’s Power Domain Partitioning Scheme from [39]

POWER MODE ACTIVE SLEEP STANDBY
EM Processor | RUN (SLEEP0-3)  SLEEP4 SLEEP5
RF Transceiver | TX/RX/IDLE IDLE POWEROFF
Srowerboman |
AON ON ON ON
PD1 ON OFF OFF
on e o
PD3 ON | ON | OFF
PD4 ON | OFF | OFF
PD5 ON | OFF | OFF

Fig. 2.7: An IoT Device’s Power Modes and Power States from [39]

* The number of PM and CS can be used to predict the power consumption of the
PMU (with the CS having a greater impact than the PM, due to more CS requiring
more area in silicon which will dissipate more energy)

* The number of PM and CS correlate greatly with the time needed to be spent
on the verification of the PMU (with the PM having a great impact than the CS,
because of the implications of PM in the number of transitions to validate)

Because of those two statements, the designers need to be careful about choosing the
most appropriate Power Partitioning scheme, as well as with choosing the amount
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of Control Signals and Power Modes that the PMU will implement. The fact that the
PMU itself needs to be considered another functional block in an Always ON domain
also highlights that the decisions need to be taken before the RTL, that is, before the
microarchitecture of the system has been established.

The most natural way to decide the setting of PD, CS and PM is, therefore, to focus
on a higher level of abstraction: the system level. In said level, the most typical
design documents available are: a natural language specification (typically in English)
or a technical language specification (typically in SystemC/TLM).

As stated in the Introduction chapter to this document, this thesis presents two frame-
works that allow for the power structure that is intrinsic to a design to become available
to those responsible for implementing the PMS within the PMU. The PD partitioning
scheme and the setting of the CS and PM depend on the availability of the implicit
power structure for the cases of a design following both a natural language speci-
fication (which is dealt with in Part I) or a technical language specification (dealt
with in Part II).
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Part I: Natural Language
Specifications



3.1

Natural Language:
Preliminaries, Relevant Work
and Response Framework

Preliminaries

It is fairly common for designers to have specifications as their initial design docu-
ments when they are following a top-down design pattern. It is also common that,
even before a specification is written, there are algorithms, flow or block diagrams
that make intuitive sense to designers. Unfortunately, the very essential informal
design documents that constitute the basic design idea are rather ambiguous and
usually come as a response to a set of requirements that have to be met. When
the way in which these early stage documents concerns themselves mainly proper
elicitation of the requirements, the documents are best approached by requirement
engineering [40].

If a specification is available, it is frequently one written in a natural language, such
as English, either in an informal descriptive tone or a more formal tone, such as
the case of a (technical) standard, very common for ASICs. In the latter case, it is
also quite likely that there exists a reference implementation described within the
standard or in a closely associated, yet separate document. Standard specifications
(usually shortened to standards) are often described as documents expressing a series
of characteristics provided by an implementation. For digital circuits and related
Systems-on-Chips (SoCs) these characteristics pertain mostly (but not exclusively) to
functionality and are typically covered in one or several chapters of the appropriate
standards. The designers are expected to comply with and follow the standards, so
as to produce validated implementations.

Traditionally, standards are long dense documents with tables, diagrams and text
detailing the underlying several aspects, attributes and features of blocks/compo-
nents/elements of a system. Because of the sheer volume of information contained in
a standard, the examination of one is almost invariably done by experienced design-
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ers. This process includes the laborious elicitation of relevant data and knowledge
from the contents of the standard, as well as any needed interpretation.

Given the opportunity, streamlining the laborious process of data and knowledge
elicitation appears to be a natural step forward. To decrease the effort required
for the manual elicitation of data and knowledge, Information Extraction (IE) is
typically used [41]. As a well known way to push for the automation of the analysis
of standards IE consists of a series of techniques to bring out relevant data. As
a general purpose toolset, IE features two common approaches are: i) domain
specific Information Extraction or ii) Open Information Extraction (OIE). As the name
of the former suggests, the approach based on it, focuses on retrieving relevant
information (facts) only on a very specific field (domain). This is usually aided by
a robust concept corpus (typically, an ontology) and by the use of other additional
knowledge sources [42] [43]. Contrary to this, OIE aims for general all purpose
information extraction or retrieval from texts of varied topics, styles and sources. For
OIE, there is a tradeoff between precision (retrieving all the useful facts) and recall
(retrieving only the useful facts). For a succinct explanation of the concepts, please
take into account that: i) precision may be defined as the number of true positives
(the useful facts), divided by the number of selected elements (the total number
of facts retrieved), ii) recall may be defined as the true positives (the useful facts)
divided by the number of relevant elements (the total number of relevant facts). For
both precision and recall the number defining them (the score) is between 0 and
1. Both these values are usually provided as a means of assessing the quality of the
results provided by the OIE tool, but do not ensure that the results are of any use for
further understanding or reasoning.

A useful fact is one germane to the understanding or description of a text based on
its domain. For instance, a fact such as "The circuit is internally connected through
wires" is typically too evident to constitute a useful piece of information, whereas
"The circuit has a output serial port" is a fact that provides significant information
that can be used to understand the text. Analogously, relevant facts are considered
facts that are not tautologies (redundancies) or grammar based constructs devoid of
significance in the context of the domain. For instance, a fact such as "The digital
circuit consists of digital components" is not a relevant fact, since it is redundant,
whereas "The digital circuit consists of an encoder and a UART" is a relevant fact since
the added information leads to further understanding.

If OIE is used for domain specific information extraction, the desired recall is usually
of higher importance than the desired precision. This is so because a high number of
relevant but not useful facts can be discarded if needed further down the processing
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tasks, whereas non relevant facts can be harder to discard if they are firstly grouped
together with relevant ones. However, a high number of both precision and recall
(such as for instance, a high F1 score) are generally desirable, even if rather difficult
to attain.

Approaches using OIE tools are more frequently researched than those using the
domain specific counterparts. Two key reasons behind this fact are: a) the desire
to make the approach as universal as possible and, b) the lack of an ontology or a
similar domain specific knowledge source. Notwithstanding the preference for OIE
tools, whatever approach to the analysis of standards can also work with domain
dependent IE tools. If a domain dependent IE tool is available and is wisely used, it
will most likely lead to more refined scrutiny than the OIE alternative.

OIE is routinely characterized as a task, in which the techniques used are grouped
into diverse subtasks (Entity Extraction, Relationship Extraction, Word Sense Dis-
ambiguation, Coreference Resolution, Terminology Extraction and many more than
tightly relate to Natural Language Processing (NLP)). Without entering into too much
detail, two of the tasks listed above are extremely central to analyzing a text with
semantic understanding as a goal: Entity Extraction and Relationship Extraction. For
a short explanation it can be said that the former retrieves relevant (for whatever
domain) entities (traditionally considered concepts-self standing notions), whereas
the latter retrieves the association that binds the entities.

For a clearer explanation of both subtasks, please consider the following sentences
from the README file (an informal specification in natural language) of an example
FIR filter, a very basic design that comes with the official SystemC distribution suite
from Accellera [44].

“The filter is a 16 tap FIR filter(fir.cc). The test bench feeds simply ascending values into
the FIR(stimulus.cc) and the output is sampled (display.cc) and displayed with print
statements.”

Entity Extraction will yield a series of entities that can be pruned later, either by
humans or by some automated procedure. A list of entities may be similar to that in
Table 3.1. Here, anyone familiar with the field of digital circuit design will notice
that fir and fir.cc refer to the some entity, not unlike the case for output and display.cc
and value and stimulus.cc (which refer to the input of the circuit). Because of these
equivalences, refined Entity Extraction leads to semantic entities, that is to say,
entities which are not mere language artifacts, but meaningful concepts within the
domain.
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Tab. 3.1: Entity Extraction

display.cc
fir.cc
fir
output
print
statement
stimulus.cc
testbench
value

Tab. 3.2: Relationship Extraction

Semantic Entity 1 | Type of relationship | Semantic Entity 2
print associatedWith statement
Fir associatedWith fir.cc

fir associatedWith stimulus.cc
Fir hasDeterminer the
statement hasQuantifier multiple
value hasQuantifier multiple
Fir hasDataValue 16

fir hasDeterminer the

output hasDataValue the

Fir hasQuality Tap
tesbench hasDeterminer the

Relationship Extraction will reveal the associations between the semantic entities.
This means, how the semantic entities relate to each other. A common format
for this may be seen in Table 3.2. The most typical relationship can be seen as a
simple association associatedWith, but there is also a numerical association hasQuan-
tifier;, hasDataValue and even more syntactic type of link hasQuality, hasDeterminer.
This presentation format is also known as triples and constitutes the most typical
presentation format for information facts output by OIE tools.

At this point it can be said that Entity Extraction is a subtask of OIE that is linked
very closely to elucidating the functional blocks of a digital circuit design. This close
link between Entity Extraction (essentially its semantic concepts) and obtaining the
functional blocks of a circuit thus links the former to the setting of PD, as it has been
previously explained how functional blocks are the constitutive elements of a Power
Domain.

Similarly to the case of Entity Extraction and the setting of Power Domains, Relation-
ship Extraction is associated with the setting of Control Signals and Power Modes.
The reason behind this association lies in the fact that Relationship Extraction links
semantic entities and these represent the functional blocks. Since functional blocks
are the forerunners of the Power Domain, the links between functional blocks (which
are characterized by the semantic entities) can be thought of as crucial information
to properly notice the Control Signals and Power Modes for the digital circuit.
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stimulus.cc - fir.cc

display.cc

Fig. 3.1: Flow/Block diagram for the FIR Filter

Tab. 3.3: Condensed Tabular Format for the FIR Filter

Entity 1 Type of relationship | Entity 2
fir.cc associatedWith Fir
stimulus.cc | associatedWith fir
display comesFrom output
display isRelatedTo statement

As a way to notice the power of Entity Extraction and Relationship Extraction to
unveil the architecture of a design, a simplified flow/block diagram the FIR filter
described above is depicted in Fig. 3.1. In it, the 3 functional blocks come from
the extracted semantic entities: stimulus.cc, fir.cc and display.cc, which are depicted
in rectangles, while the the other entities (testbench, outputs and statements) are
depicted in ellipses and represents actions and information sources/outputs of the
functional blocks. Fig. 3.1 follows the condensed tabular format summarizing both
Entity Extraction and Relationship Extraction for the semantic entities, as depicted
in Table 3.3.

In this example of Entity Extraction and Relationship Extraction, the values for
precision and recall can be calculated by examining both Table 3.1 and Table 3.2
in light of the information condensed in Table 3.3. It is then possible to say that
there are 11 extracted facts (the triples), of which 5 are semantically relevant and
9 self standing entities, of which 6 are relevant. We know the above thanks to the
explanation of the diagram on Fig. 3.1. Out of the 6 relevant entities and the 5
semantically relevant relationships come 4 useful facts depicted in Table 3.3. As
such the precision considered the average of 0.36 (4 out of 11) and 0.44 (4 out of
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9), whereas the recall can be considered the average of 0.60 (4 out of 6) and 0.8 (4
out of 5). It is therefore noticeable that the recall is higher than the precision, which
falls under the preferences stated above for OIE tools applied to domain specific
scenarios.

Power-aware Interpretation

Once the semantic entities, as well as the relationship between them are known, not
only a flow/block diagram can be built, but it can be interpreted in the context of
power-aware design. For instance, following Fig. 3.1, a designer can confidently
conclude the following:

* The FIR filter consists of 3 functional blocks that are prime candidates for 3
Power Domains: stimulus.cc, fir.cc and display.cc.

* The aforementioned 3 functional blocks should be controlled independently of
each other, considering the sequential nature of the information flow, leading
to 3 Control Signals, one per each Power Domain.

* The FIR filter consists of at least three stages: the stimulus stage (wWhere the
input is fed to the filter) the filtering stage (where the filtering takes place)
and the output stage (where the results are shown in the output). These
stages happen concurrently, in spite of the sequential nature of the information
flow, leading to at least 4 Power Modes: one in which the FIR filter is in full
operation, one in which it is not operative at all, and two others in which either
stimulus.cc or display.cc are inactive due to lack of input or lack of processed
information to show, respectively.

The above interpretations are a result of the expertise possessed by a human designer.
Later in this chapter, the proposed response framework showcases how similar
interpretations can be achieved by the codification of the some of the expertise and
the reasoning into a set of rules.

Based on how the power-aware interpretation above uses the information provided
by OIE, it is reasonable to consider OIE as a more abstract way to gather information
from a natural language specification for a variety of uses. This is why the next
section looks at OIE and related NLP techniques in the broader context of specifica-
tion analysis for both power-aware design and other related design tasks at system
levels.
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3.2 Relevant Work

The power of IE (both OIE and domain dependent) is why it is at the core of most
automated (or semi-automated) attempts to address the issues of natural language
specification analysis, especially those related to extracting and then addressing
relevant functionality requirements or concerns. However, it has been shown that IE
techniques can also be valid approaches to dealing with other matters within the
analysis of standards. Some research has shown that IE techniques are appropriate,
for instance, as aids in the verification process of digital circuit systems according
to a standard, as shown by Harris et al. [45]. Moreover, some other works have
showcased the usage of IE to deal with other concerns within broader and more
generalized examinations of specifications, such as the work of Singh et al. [46] and
Shankar et al. [47].

For the most part, the work on IE for specification analysis (of which the works
cited above are shining examples) has a main goal: to unveil the structure that the
specification imposes on any design complying with it. Whether the focus is on: how
to use the unveiled information to verify, through assertions that a digital circuit
design is compliant with a specification (as is the case of Harris), or on how to
ultimately create a Knowledge Base from the information unveiled (the case of Singh
and Shankar), the process is mostly concerned with the extraction of relevant facts
with high precision, even at the cost of some recall.

The closest (so far) that research has got to the usage of IE techniques for power-
aware DSE and for the extraction of the power structure innate to a specification
seems to have been when the bases of the work of Singh were extended to deal with
system level power estimation [48]. In said research work, the main concern was to
estimate power from a given description, with no attempt to use the information
extraction to uncover the innate power structure defined by the specification under
analysis.

Regardless of how the analysis of the specification is performed, it is a commonplace
scenario for designers in charge of system level power-aware design to conduct DSE
after having scrutinized the natural language specification. Potential alternative
design structures conforming to the specifications are then the result of the creative
ingenuity of the designers. These alternative design structures are ordinarily consid-
ered early stage solutions in need of further evaluation. Such further evaluation of
the alternatives is a task of DSE processes, which also allow designers to analyze
latent optimizations for any selected alternative and even to “discover” new varia-
tions of said alternative that may be suitable for varying scenarios. The byproduct
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of this evaluation task (the generated knowledge) is an extremely valuable asset
that typically remains within the individual or group that produced it, generally in a
visual representation (such as UML), as is described by Liehr et al. [49].

The holistic and expertise dependent nature of natural language specification analy-
sis has led many to turn to ways to address the unsystematic and ambiguous nature
of said specifications. One explored avenue has been the Expert System (ES). ES
represent an attempt to mimic the way knowledgeable humans (in this case, de-
signers with expertise) parse the specification and make sense (by reasoning) of the
information contained therein. Robert Steele, in the late 1980s posed one of the first
attempts at harnessing the power of an ES to help with digital circuit design [50].
His rationale was that designers’ expertise typically shows itself in deep unsystematic
knowledge whose storage, dissemination and further reuse were rather difficult for
a Computer Aided Design (CAD) tool to apply on its own. For that to happen, the
CAD tool needs to have understanding and command of information sources such as
Knowledge Bases and Ontologies, as well as of concepts such as inference.

Unfortunately, while the previous concepts have been (and remain) subjects of
research, the extent by which they are used by humans is still not matched by
semi-automated machine based methods. The research line "inaugurated" by Steele
was later explored (for example in [51]), but it never dealt with system-level design
concerns, because at the time (early 1990s), the system levels were not a focus of
research.

The use of information sources like the ones mentioned above within a semi-
automated system (in many cases, Intelligent Decision Support Systems-IDSS) in
the realm of EDA has been limited due their unavailability, general incompleteness
and inadequate upkeep. As is the usual case with documentation of technical na-
ture, the curating tasks associated to it are sadly relegated (whether consciously
or unconsciously) in the list of priorities. Since properly curated information is the
backbone of insight and expertise, Knowledge Based Systems (KBS) that try to mimic
the reasoning, inference and matching abilities of humans are often limited by their
inadequacies or limitations in particular knowledge domains.

Notwithstanding the apparently bleak outlook of ES for the IC design field, ES
remain a very straightforward choice connected to IE. ES are the most natural choice
for a KBS to yield useful and reproducible results in specification analysis done as
part of the Design Space Exploration (DSE) process, as ES attempt to condense the
available expertise into machine based reasoning, inference and decision making.
Outside the realm of IC design, ES are reasonably common within diverse fields such
as accounting [52], medicine [53] and engineering [54].
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Other early attempts at introducing ES to the realm of IC design, such as the work
of Subrahmanyam [55] and Wu et al. [56] well were received, but the interest in
continuing the research ideas dwindled over the 1990s. There are several reasons
for this decreasing interest, but arguably the most evident is that implementations of
ES have not been able to materialize the level of automation and universality once
envisioned. However, this does not detract from the powerful nature of ES based
solutions for specification analysis and their potential application to power-aware
design at the system level.

In an endeavor to prove the validity of the ES approach for specification analysis for
power-aware design at the system level, in the next section, an ES based framework
is presented as a response. The overall goal is to be able to unveil the power structure
innate to the specification, thus having a baseline from which to aid in setting the
Power Domains as well as in setting the Control Signals and Power Modes for the
Power Management Unit to implement.

Response Framework

Architectural Overview

The response framework is ES based. The ES takes its input from IE tools applied to
natural language specifications, and produces outputs that yield valid Power Domain
Partitioning schemes, as well as validated sets of PM and CS. The system is a rule
based tool that analyzes the text of a specification and seeks to automatically process
the information obtained via the analysis in a way that resembles that of an expert
designer. The reasoning of a seasoned designer (which is based on the expertise
accumulated) is the way valid PD partitioning schemes and validated sets of PM
and CS are obtained. The main contribution of this framework is, then, the way the
rules are encoded to mimic the type of analytical process with which an expert designer

would approach the specification.

The general architecture of the framework (depicted in Fig. 3.2) is summarily
described through a block diagram. In such a block diagram, the main assumption
of the system is clear: the Selected Input (sentences) are extracted from General
Input (Specification) to be later fed to the Information Extraction process. This
extraction task is not part of the ES (which is enclosed by a dash lined rectangle box

in the figure) and is done by an OIE tool following the principles previously outlined.

While such a thing seems to be in direct opposition to the intention of automated
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Fig. 3.2: Architecture of the Expert System

analysis for a specification, both the sheer volume of text in a typical standard and
the lack of extremely advanced topic modeling tools, make this assumption quite
reasonable. Moreover, the ES (and the response framework as a whole) is not
intended to replace the designer, not even in its supervisory role, but more so to aid
in the design process.

The set of rules that are the input needed for the Reasoning process are editable
and may require adaptation for generalized use. This should not be looked at as
hindrance, since an ES is typically developed ad-hoc, with its logic being generaliz-
able only to a certain extent within its intended field of use. Furthermore, the rules
(which currently either fire or do not) may require fuzzification in the future, so
as to reach the kind of subtle analysis performed by a well versed designer. While
fuzzification would a welcome addition, it is still not fully necessary, because a set
of clear rules can still produce validated results that constitute a baseline output.

The output, as clearly depicted in the figure, are the Power Domain Partitioning
scheme, the Control Signals and the Power Modes. For the latter two, the number is
the important value, since the nature of the PM or what type of CS may be required
are not needed for the basic decision making process targeted by the response
framework.
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3.3.2 The Stages of the Response Framework

Let the case of an MBus device be considered as the running case. MBus is a mid
2010s development of a bus architecture aimed at low power consumption and
at the application of power-aware principles [57]. The MBus authors provide a
standard specification [58], as well as a reference implementation described in
natural language [59]. By going through the execution flow for the ES, how the
PD Partitioning Scheme as well as the setting of the CS and PM are obtained will
become readily apparent.

So as to familiarize the reader to the kind of sentences functioning as Selected Input,
some are listed below:

Selected sentences from the standard specification:

* For the purposes of this document, each MBus node has two modules: (i) The
block that interfaces with the bus itself—we define this as the Bus Controller—,
and (ii) the block that comprises the rest of the node—we define this as the
Layer.

* With MBus, a completely power-gated node can seamlessly awaken its Bus
Controller with no special assistance from the sending node or the mediator
node.

* A Bus Controller can filter addresses, only waking the Layer for a message
destined for that node.

* MBus edges can also be harvested to return both the Layer and the Bus
Controller to sleep mode.

Notice that the sentences above are quite descriptive and relatively verbose. They
have been extracted from the Chapter "Power Design" of the standard. Owing to
their verbosity, which is typical in standards, these selected sentences are relatively
challenging to parse for relationship extraction. The verbosity tends to require
more parsing prowess from the OIE tools, because each sentence contains words
(such as seamlessly, special or harvested) whose relationship to the entities is not as
straightforwardly unveiled as is the case for Part of Speech (POS) tokens, such as
verbs or adjectives in close proximity to a noun defining those entities.

The challenges posed by the proper selection of the sentences leads to incorporating
into the list some other selected sentences from the reference implementation (which
is also a specification for the purposes of the response framework). Among those
further selected sentences are:
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* The M3 MBus implementation defines two major components: a Bus Controller
and a Layer Controller.

* The bus controller understands the MBus protocol and presents a simple
word-wide interface to higher layers.

* The generic layer controller provides a register file and a memory interface,
sufficient for most simple devices.

* In addition, the M3 MBus implementation requires some support blocks: a
Sleep Controller, a Wire Controller, and an Interrupt Controller.

* If the layer controller is powered off, however, the bus controller must wake
the layer controller.

Notice that these other selected sentences exhibit a simpler pattern. Not as verbose
as those selected from the Standard, the words in these sentences are mostly nouns,
verbs and adjectives (in terms of POS tokens), within a mostly Subject-Verb-Object
(SVO) order that reduces the parsing prowess require to parse them.

It is also important to notice that the selection of the sentences is a process than
could potentially incur in automation at some point in the future. However, said
process of selection would require considerable use of machine learning techniques
that are still too onerous (in terms of computational complexity), which constitutes
the main reason why this step is not automated.

Once the Selected Input has been defined, the way the response framework is
implemented responds to the following stages:

3.3.2.1 The Information Extraction Stage

The Information Extraction (IE) stage is where the processing of the sentences fed
into the ES takes place. The main goal of this stage is to identify the functional
blocks and their connection from the entities and relationships extracted from the
Selected Input.

The IE task mainly performs the subtasks of Entity Extraction and Relationship
Extraction, leading to a list of relevant entities and their relationships. The list is
represented by triples of the form [Entity 1]-[Relationship]-[Entity 2]. The triples
are then an input to the Reasoning process.

The IE process is automated, although its output (the triples) is not meant to remain
unsupervised. The aptness of the triples for their inclusion as input to the Reasoning
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process should be ascertained by a seasoned designer. Human intervention is only
required to adjust the depth and inner workings of the IE tasks before usage and not
on a continuous basis. The adjustments are intended as a way to produce a better
set of triples for further analysis.

In order to explain how this IE task works in further detail, it becomes necessary
to introduce the reader to more specialized concepts in the realm of NLP and com-
putational linguistics. These concepts and how they shape this stage are explained
next.

3.3.2.1.1 Natural Language Processing and Universal Dependencies As very few
ontologies have been developed in for ASIC design [60] [61], non ontology based
approaches are to be used. OIE approaches, owing to their universality need to be
tailored to better meet the needs of those performing specification analysis. This
tailoring can be done through a suitable use of a Dependency Grammar (DG) scheme,
one that can better capture the semantics of the sentences under analysis. One such
DG scheme is that of Universal Dependencies (UD) [62].

UD are a novel way in which linguistic entities in a sentence (typically Parts of
Speech tokens) are related to one another based on the subordination of functional
entities (verbs and adjectives, for instance) to content entities (nouns, for instance).
This dependency style is better suited for the type of semantic analysis used in
OIE than traditionally purely syntactic DGs [63]. UD has been recently used for
OIE, showing promising results [64], specifically through the implementation of
a Predicate-Argument extraction tool that is usable as part of a NLP approach to
specification analysis.

The salient point of the UD paradigm is that POS tokens are labeled in a way
that gives content words the role of central nodes in the dependency hierarchy, as
opposed to giving said role to function words. In UD, content words are considered
relevant standing notions (for example, POS tokens such as nouns) are considered
the master nodes to which the other nodes (for example, adjectives or verbs) refer
to.

In order to better analyze the UD structure of a given sentence, it is useful to utilize
two computational linguistic concepts: Predicate and Argument. In the context of
linguistics, predicates are verbs and their auxiliaries and arguments are other words
(tokens) that give meaning (semantic sense) to the predicate. These concepts can be
extracted using UD as a basis.
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aux amod
{They} [are preparing} [my older son} for

Fig. 3.3: Example of a Predicate-Argument Extraction based on UD

In Fig. 3.3 there is a simplified presentation of how predicates and arguments can
be extracted with the UD scheme being used as the underlying structure in the
extraction. In the figure (that appears in the documentation for the aforementioned
Predicate-Argument tool), the following phrase is analyzed:

"They are preparing my older son for kindergarten"

The 3 argument phrases are extracted as "They", "my older son" and "kindergarten",
with the predicate phrase being "are preparing". Within the "my older son" argument
phrase the token "my" is suitably labeled with the UD label nmod:poss (for a nominal
possessive modifier), whereas the token "older" is labeled as a amod (for a nominal

adjective modifier). Additionally, within the predicate phrase "are preparing", "are
is labeled a aux (for auxiliary of the predicate root "preparing")

For the processing of the Selected Input, a Predicate-argument Extraction tool that
uses UD [65] is the tool of choice. Regardless of the perception of the linguistic
community over the usefulness of the UD paradigm, it has been proven useful for se-
mantically oriented analysis, such as the one required for specification analysis [64].
The tool follows the following set of directives:

1st directive: Predicate root extraction

Here, UD labeled tokens of the type nsubj, csubj, nsubjpass, csubjpass (all of them
denoting nouns, subjects or subject modifiers) or of the advcl or acl type (adverbial
clauses or finite clauses modifying nouns) are prime candidates for predicate root.
Those tokens of the conj type (denoting a conjunction of two nouns) are also prime
candidates.

2nd directive: Argument root identification
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Here, UB labeled tokens of the type nsubj, csubj, nsubjpass, csubjpass (which denote
nominal nouns and modify the previously identified predicate root) or of the type
nmod and advmod (which are nominal modifiers of the previously identify predicate
root) are identified.

3rd directive: Argument resolution

In this step, the tool extract and manages (does resolution) of additional argument
roots, based on the understanding that:

-a UD labeled xcomp (a clause that acts as a complement to a verb without its own
subject) are not argument on their own right, but are instead subject to the root
token they complement.

-a UD labeled acl is related to the argument root that it modifies.

-a UD labeled conj of an argument root is in itself an argument root.

4th directive: Predicate phrase extraction

Here, the dependency tree of the predicate is established. This means that the
structure of the predicate phrase is established in relation to the predicate root
extracted.

5th directive: Argument phrases extraction

Here, the dependency tree of the arguments are established. This means that the
structure of the predicate phrase is established in relation to each argument root
extracted.

Let one sentence from the Selected Input be taken for the same process outlined in
Fig. 3.3:

The M3 MBus implementation defines two major components: a Bus
Controller and a Layer Controller.

In seeing Fig. 3.4, it becomes clear that the power of UD for general POS token
analysis can be properly harnessed for its usage in the ES. Yet, the above only shows
how a sentence can be semantically parsed for appropriate content thanks to the
Predicate-argument tool. An explanation of the internal rules that form the Relation
Extraction subtask of this stage is next.
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Fig. 3.4: Output of a Predicate-Argument Tool for Part of the Running Case

3.3.2.1.2 From Universal Dependencies to Triples To go from the Predicate-Argument
tool output to the triples containing the knowledge in the Relation Extraction task,
the output of the tool should be considered following a set of internal rules. The
application of this set of internal rules highlights how the semantically oriented
nature of the UD scheme and the Predicate-Argument extraction can be successfully
used.

The internal rules have been devised from a heuristic approach that attempts to
mimic the reasoning and conceptual understanding of a human designer. Given the
well known difficulties in the modeling of expert reasoning (for instance, as part of an
Expert System) [66], the internal rules are always subject to improvement efforts. As
such, the internal rules should be considered as a validated approach to knowledge
acquisition from NLP based specification analysis and not as an immutable set of
information extraction criteria.

Furthermore, the internal rules have been devised so as to use make sense of
UD labeled tokens within the ASIC domain and, as such, represent one of the
fundamental cogs in the machinery of the framework. Without the internal rules,
whose authorship belongs to the document writer, it would not be possible to use
OIE (with UD based NLP) as a viable approach to specification analysis in the ASIC
design field. The viability of the approach rests on the internal rules being able to
elicit useful facts in the form of triples.

A non exhaustive set of internal rules are listed as follows:

- Predicate phrases are to be considered the semantic link between two concepts (a
functional block and another functional block, a functional block and a component
or a functional block and its properties, etc.). As such, predicate phrases constitute
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{MS MBus implementation} defines [two components.}

[Component of MBus implementation} is {Bus Controller.}

[Component of MBus implementation} is [Layer Controller.}

Fig. 3.5: Domain Specific Triples from Part of the Selected Input

the relation between two entities. In the example sentence analyzed in Fig. 3.4 the
predicate is the verb "defines".

- The root of a predicate phrase must be analyzed for relevant domain specific
semantic value in the following stage of the framework. For instance, in Fig. 3.4 this
root is just the verb "define", which strongly suggests that Arg 2, Arg 3 and Arg4 are
features of Argl.

- Argument phrases with both nsubj labeled tokens and no dobj labeled tokens are
prime candidates for digital circuit master functional blocks, whereas argument
phrases with dobj and nsubj labeled tokens are prime candidates for component
blocks or properties of the master functional blocks. In Fig. 3.4, it becomes clear
that "implementation" (the nsubj token), which is compounded with M3 MBus is a
master functional block.

- A component block can be a functional block if it is possible to apply the rule above
to itself (implying a hierarchy of blocks).

- Compound and amod and nmod labeled tokens of an argument phrase are to be
taken as properties of a functional block or component block. In Fig. 3.4, "Bus
Controller" of Arg 3, "Layer Controller" of Arg3 and "two major components" of Arg2,
are either labeled Compound or nmod and constitute component blocks.

- dep labeled tokens identify a hierarchical link between a functional block and a
property or a component block.

Applying the rules for processing, it is possible to arrive to the triples for said
sentence as stated in Fig. 3.6:

The entity-relation aspect of the triples can be alternatively viewed in Fig. 3.6 (the
entities are in a bubble, while the relation is in bold).

In the context of the end result of this stage, it is important to consider the precision
and recall achieved by the application of the Predicate-argument tool and the internal
rules. For the running case, and following the example set up in the Preliminaries
section, these are presented in Table 3.4.
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As can be seen in the table, the leftmost columns show the amount of information
that is valuable for the understanding of the circuit. These numbers are validated by
the expertise of the designer evaluating the approach.

The values for precision and recall, in the rightmost columns are not as high as
desired, but the influence of these in the overall quality of the output produced by
the framework is lessened greatly as the next stage of the framework comes to the
forefront.

3.3.2.2 The Reasoning Stage

The Reasoning stage is in charge of producing the final output of the ES, that is to
say i) a Power Domain Partitioning scheme and/or ii) Control Signals and Power
Modes. Its inputs are two: the triples and the rules. The former are the output of the
previous process, while the latter are an integral part of the ES, but independent of
previous processes.

The rules are supposed to summarize and bring together the expertise that constitutes
the basis for any power management decision. As is the case with facts, heuristics,
guidelines and procedures, the set of rules should be refined and augmented as need
be. The set of rules used will also vary depending on the output desired, but given
the close link between PM, CS and PD, most of the rules will be used in producing
both output i) or output ii).

Notice that the rules are different from the internal rules of the previous stage, as
the rules are meant to be an input to the ES and concern themselves with how the
triples are supposed to be interpreted in terms of the output of the ES. In summary,
while internal rules concern themselves with the enabling of semantic understanding
within the Information Extraction stage, rules concern themselves with how to unveil
the power architecture intrinsically provided by the specification.

Total number
Number
of relevant . .
of . ... | Recall | Precision
domain specific
extracted facts
facts

Predicate-argument

& 15 22 0.6 0.3
tool based approach

Tab. 3.4: Scores Validating the Approach
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In simplified and not exhaustive form, the rules can be grouped into 4 types, each of
which is likely to be representing a portion of the heuristic method followed by a
seasoned designer.

1. If any extracted entities are consistently (that is repeatedly) appearing as [entity
1] in the [entity 1] [relationship] [entity 2] triple structure, then they are singled
out as presumed blocks and considered prime candidates for independent power
domains.

2. Entities repeatedly appearing as [entity 2] in several triples are likely to be
subordinate components of entities often appearing as [entity 1]. If these entities
appearing as [entity 2] are components, they should be grouped in the same domain
as those entities appearing as [entity 1], which they relate to.

3. When successful coreference resolution is present and entity 1 is a block, entity 2
probably has a hierarchical relationship with entity 1. Entity 2, even if a block in
itself, is likely to signal an architectural or timing related property of entity 1.

4. If a condition is set for an entity to have some relationship with another, there is
an assumption made about the entities having different activity (timing patterns).

These 4 type of rules are intended to be generic forms to make sense of triples with
regards to their impact on the power management strategy and the general power
architecture of the design described by the triples. In essence, the idea of each of
the type of rules is to "make sense" of the triples.

Type 1 rules follow the heuristic that an entity that repeats itself as preeminent in
several triples (by virtue of its placement as entity 1 in the triple format), points
to an "independent" component of the design. For instance in the set of triples in
Fig. 3.6, MBus implementation is taken to be the top level component of the design,
pointing to a similarly top level Power Domain. This kind of rule bespeaks the
fundamentals of the power structure of the design under analysis.

Type 2 rules follow the heuristic that an entity in a subordinate position within the
triple (as entity 2), is highly likely to also be subordinate to the component defined
by entity 1. Back to the set of triples in Fig. 3.6, this type of rule yields the highly
probably "conclusion" that Bus Controller and Layer Controller are subordinate to
MBus implementation. In this case, the subordination means that the Bus Controller
and Layer Controller belong to MBus implementation and are therefore not the top
level Power Domain.

Type 3 rules follow the heuristic that if there is a way to know all the relationships
that signal how an entity is affected by other (which is essentially what coreference
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Bus Controller| wakes |Layer Controller.

Fig. 3.6: Another Domain Specific Triple from Part of the Selected Input

resolution enables), these relationships must be primarily analyzed as signaling
possible characteristics of a component. As an example of how this type of rule
operates, please notice how in Fig. 3.6, there is the case that Bus Controller wakes
Layer Controller, implying two blocks with a controlling sequence. Such a useful fact
leads to thinking of at least a control signal being present in the design.

Type 4 rules follow the heuristic that if there is a relationship of conditionality
between entities, there are highly likely to have different activation patterns. Going
back to Fig. 3.6, the application of this type of heuristic leads to considering the high
probability that Bus Controller and Layer Controller should be controlled separately.
This, in turn, strongly suggests one extra Control Signal, the likes of which is related
to the control of at 2 Power Modes (since the conditional OFF property of Layer
Controller supposes a corresponding ON property).

In this stage, the rules are applied within the context of a CLIPS inspired Python
library for the building of Expert Systems called Experta [67]. Essentially, Experta is
the software framework that allows for the Expert System to be built.

An excerpt of the code that implement the first rule can be seen in Fig. 3.7:

In Fig. 3.7 it is possible to see that the main Facts leading to the Main Rules in the
class Triple are (in order of appearance):

* The declaration of the setblock fact as a resulting fact

* The declaration of the fact that once the number of instances of entityl (a)
is beyond 5, it means that the entity is prime candidate for being taken as a
preliminary PD

* The declaration of the fact that entity1, relation and entity2 can be filled with
the appropriate names

As it is not within the purview of the thesis to further explain the inner workings of
the Experta library, this shall serve only as to familiarize the reader with the type of
programming involved in the ES.

In this stage, it is possible to add another score into consideration as a quality metric
for the response framework as in acts until said stage. This quality metric is the
time taken for the framework to produce valid triples. Whereas said values are
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import re
from experta import *
00 oo

class Triple(KnowledgeEngine):

@DefFacts ()
def_ascertain(self):
yieldFact (action="setblock")

@Rule (Fact (a=P(lambda a: a >= 5))

@Rule (Fact (action=’setblock’),
NOT (Fact (entity1=L())))
def ask_entityl(self):
self.declare(Fact(entityl=input("State the entity 1")))
a += 1

@Rule (Fact (action=’setblock’),

NOT (Fact (relation=W())))
def ask_relation(self):

self .declare(Fact(relation=input ("State the relation type")))

@Rule (Fact (action=’setblock’),

NOT (Fact (entity2=L())))
def ask_entity2(self):

self .declare (Fact(entity2=input ("State the entity 2")))

@Rule (Fact (action=’setblock’),

NOT (Fact (entity2=())))
def ask_entity2(self):
self.declare(Fact(entity2=input ("State the entity 2")))

@Rule (Fact (action=’setblock’),
Fact (entityl=MATCH.entityl),
Fact (relation=MATCH.relation),
Fact (entity2)=MATCH.entity2),
Fact (a=Match.a))
def setblock(self, entityl, relation, entity2, a):
print ("Introduce the triple" % (entityl, relation, entity2))
print ("Entity 1 has been instantiated enough times to be
considered candidate for PD")

/0o oo
engine.Triple ()
engine.reset ()
engine.run ()

Fig. 3.7: Excerpt of the Rules
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obviously highly dependent on the length of the sentences parsed, the amount of
sentences parsed (in the previous stage), as well as on the firing of the appropriate
rules programmed into the ES in the current stage, this is a number than rarely
exceeds 2 seconds per sentence.

Given the amount of sentences selected as input and compensating for the need for
more rules whenever the ES needs refinement, it is safe to conclude that the time
spent by the ES is rather negligible when compared to the crafting of the Selected
Input, a non automated procedure.

3.3.2.3 The Outputs

The ES will yield a PD partitioning scheme and a set of CS and PM.

From the sentences from the MBus implementation being taken as the specification
and through the ES (both the Information Extraction and the Reasoning stages), the
response framework yields a likely Power Domain partitioning scheme consisting of
two Power Domains that can be switched on/off (power-gated). These two Power
Domains are the Bus Controller and the Layer Controller. While the existence of
the aforementioned controllers can be easily deduced from the first element in the
list of selected sentences from the reference implementation, this is not enough to
deduce whether or not the components belong in two different power domains. It is
through the reasoning based on the rules that the existence of two Power Domains
is surmised. Additionally, there is an Always ON domain that is to contain functional
blocks.

Also from the selected sentences of the specification being considered, the response
framework yields a set of Control Signals and Power Modes. Once the Information
Extraction stage identifies the entities and their relationships, the Reasoning stage is
where rules designed to set the Control Signals and Power Modes are applied.

The Reasoning stage is based on the ability to analyze the potential profile of
an implementation, a description of which is taken to be the specification under
analysis. Such a profile is a record of the pattern of activation/deactivation (powering
on/powering off) of each functional block for each of the tasks performed by the
implementation. Taking the profile into consideration, the gist of the Reasoning
stage can be summarized by the following two statements:

1. A PM is a unique pattern of active/inactive states for all identified functional
blocks.
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2. A CS is taken as a unique way to switch one or several functional blocks into
active/inactive state for each pattern.

In the case at hand, the number of PM is set to 4, while the number of CS is
determined to be 3. A way to visualize these results is depicted in Table 3.5

Sleep Interrupt Wire Layer Bus
Controller | Controller | Controller Controller Controller
Power Mode 1 1 1 1 0 1
Power Mode 2 1 1 1 1 1
Power Mode 3 1 1 1 0 0
Power Mode 4 0 0 0 0 0
Control Signal 1 Control Signal 2 | Control Signal 3

Tab. 3.5: Control Signals and Power Modes for the MBus Device

A short explanation on how the response framework arrives at 3 CS and 4 PM can
be offered through a validating manual analysis, as follows:

There is a a natural (to an experience designer) understanding that the Sleep
Controller, the Interrupt Controller and the Wire Controller belong in the same
Always ON domain, which means that they are controllable through a single Control
Signal. in addition, it is clear that the Bus Controller and the Layer Controller belong
in different Power Domains and that the former can be active or inactive while the
latter is active. Given the fact that the Bus Controller is also capable of being Power
Gated, it is clear that if such a component is inactive, the same would happen to the
Layer Controller, which is dependent on it.

Following the premises outlined above, it is clear that at least 3 CS are needed
for the implementation (one per each Power Domain), as well as 3 Power Modes
(according to the combination of active/inactive states for the Layer Controller and
the Bus Controller). The extra (fourth) PM is shown in Table 3.5 as a Power OFF
Mode corresponding to the non operative status of the Always ON domain, which is
a typical PM for any circuit.

3.3.2.4 Limitations of the Response Framework

Based on the description of the stages of the response framework, it becomes clear

that said framework fulfills its purpose only under certain conditions of operation.

The extent of these limitations does not invalidate the efficacy of the framework, but
does reveal areas in which further work is necessary to improve its effectiveness.

The limitations can be grouped into 3 categories:
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1. Working assumptions: these are limitations that relate to certain structures
for the framework to properly work. For instance, the Selected Input of
the framework needs to be both manually selected (which precludes full
automation) as well as selected for clarity in its sentences. A specification with
extremely verbose sentences is not apt for the framework.

2. Efficacy assumptions: these are limitations related to how the framework is
designed to operate in order to conduct proper analysis. For instance, the
internal rules in the Information Extraction stage need to be comprehensive
enough so as to yield a recall over 0.4 (at the least) so that as many useful
facts are properly turned into triples. Furthermore, this category of limitation
also applies to the rules as input to the Reasoning stage, since these have to
capture the heuristics of the expertise of the designer in order to turn the set
of triples into the Power Domain partitioning scheme and/or the setting of
Power Modes and Control Signals. If either the internal rules in the IE stage
or the rules in the Reasoning stage are insufficient in number or adequacy,
the end result will yield extremely simplified results, which render the output
inefficacious.

3. Output assumptions: these are limitations that relate to how the output is
manifested. For instance, in the running case at hand, the assumption that
a Control Signals imply at least 2 Power Domains enables the determination
of a Power Domain partitioning scheme. In the same vein, for the sake of
simplicity, a Control Signal is considered responsible for only 2 internal power
states (ON/OFF) of Power Domains, leading to a reduced number of Power
Modes. This type of assumptions limit the framework to very basic outputs,
which shun DVFES or other power management techniques, as well as forcing
output i (the PD partitioning scheme) and output ii (the CS and PM) to be
determined at the same time.

The limitations of the response frameworks have several origins, but they essentially
relate to technical limitations of both Expert Systems, as well as Open Information
Extraction tools and frameworks. In addition, there are limitations related to
implementation issues stemming from the original nature of the approach presented
by the framework. Irrespective of the origin, these limitations do not imply that the
framework is not usable, but point to the what it requires to be be usable.
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3.4 Concluding Remarks

Since the need to parse a natural language specification is becoming more ubiquitous,
tools have been developed to aid the designer in this process. While the lack of
ontologies is a roadblock to more efficient and fine tuned Information Extraction
within the ASIC design field, Open Information Extraction (OIE) is still effective in
providing valuable assistance for some specification analysis tasks such as extraction
of verification statements and ASIC property recognition.

The main contribution presented here is an Expert System (ES) based on Universal
Dependencies (UD), a Dependency Grammar scheme that is semantically oriented.
The use of UD within the Expert System makes it possible to elicit useful and
relevant facts from a Selected Input (sentences from a specification) from the triples
yielded via the use of the internal rules governing the Dependency Grammar scheme.
These triples working together with the ES rules are meant to mimic the reasoning
of a designer with regards to extracting valuable knowledge to finally output a
Power Domain partitioning scheme and/or the setting of Control Signals and Power
Modes.
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Application of the response
framework

ASIC Designs from Natural Language

When the specification a designer has as its main design document is in natural
language and the digital circuit being designed is an ASIC, it is very likely that said
specification will be either: i) a technical standard filled with flowcharts, graphs and
other text elements, together with prose, or ii) a reference implementation, filled
with list of variables and configuration options, as well as specialized comparative
graphs that purport to show how the implementation complies with a given standard.
In addition the latter are more likely to contain textual descriptions of the intended
operation flows in prose.

Typically, an ASIC design is under the need to comply with strict regulations involving
physical variables up to the transistor level, or the gate level, as well as area or power
budgets, closely tied to floorplanning, routing and other tasks that are performed at
lower levels of abstraction. A technical standard normally lists numerical ranges for
important variables that the circuit has to manage, sometimes presented in table<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>